Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto INSERISCI in fondo alla pagina
CINECA IRIS Institutional Research Information System
The giant radio galaxyM87 with its proximity (16Mpc), famous jet, and very massive black hole ((3−6)×109 M)
provides a unique opportunity to investigate the origin of very high energy (VHE; E>100 GeV) γ -ray emission
generated in relativistic outflows and the surroundings of supermassive black holes. M 87 has been established as a
VHE γ -ray emitter since 2006. The VHE γ -ray emission displays strong variability on timescales as short as a day.
In this paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and VERITAS instruments
in 2010 are reported. During the campaign, a flare at VHE was detected triggering further observations at VHE
(H.E.S.S.), X-rays (Chandra), and radio (43 GHz Very Long Baseline Array, VLBA). The excellent sampling
of the VHE γ -ray light curve enables one to derive a precise temporal characterization of the flare: the single,
isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay
times of τ rise = (1.69 ± 0.30) days and τ
decay = (0.611 ± 0.080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share
very similar timescales (∼day), peak fluxes (Φ>0.35 TeV (1–3) × 10−11 photons cm−2 s−1), and VHE spectra.
VLBA radio observations of 43 GHz of the inner jet regions indicate no enhanced flux in 2010 in contrast to
observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE
flare. On the other hand, Chandra X-ray observations taken ∼3 days after the peak of the VHE γ -ray emission
reveal an enhanced flux from the core (flux increased by factor ∼2; variability timescale <2 days). The long-term
(2001–2010) multi-wavelength (MWL) light curve of M 87, spanning from radio to VHE and including data from
Hubble Space Telescope, Liverpool Telescope, Very Large Array, and European VLBI Network, is used to further
investigate the origin of the VHE γ -ray emission. No unique, common MWL signature of the three VHE flares has
been identified. In the outer kiloparsec jet region, in particular in HST-1, no enhancedMWLactivity was detected in
2008 and 2010, disfavoring it as the origin of the VHE flares during these years. Shortly after two of the three flares
(2008 and 2010), the X-ray core was observed to be at a higher flux level than its characteristic range (determined
from more than 60 monitoring observations: 2002–2009). In 2005, the strong flux dominance of HST-1 could have
suppressed the detection of such a feature. Published models for VHE γ -ray emission from M 87 are reviewed in
the light of the new data.
The 2010 Very High Energy Gamma-Ray Flare and 10 Years of Multi-wavelength Observations of M 87
A. Abramowski;F. Acero;F. Aharonian;A. G. Akhperjanian;G. Anton;A. Balzer;A. Barnacka;U. Barres de Almeida;Y. Becherini;J. Becker;B. Behera;K. Bernlöhr;E. Birsin;J. Biteau;A. Bochow;C. Boisson;J. Bolmont;P. Bordas;J. Brucker;F. Brun;P. Brun;T. Bulik;I. Büsching;S. Carrigan;S. Casanova;M. Cerruti;P. M. Chadwick;A. Charbonnier;R. C. G. Chaves;A. Cheesebrough;A. C. Clapson;G. Coignet;G. Cologna;J. Conrad;M. Dalton;M. K. Daniel;I. D. Davids;B. Degrange;C. Deil;H. J. Dickinson;A. Djannati Ataï;W. Domainko;L. O.'.C. Drury;G. Dubus;K. Dutson;J. Dyks;M. Dyrda;K. Egberts;P. Eger;P. Espigat;L. Fallon;C. Farnier;S. Fegan;F. Feinstein;M. V. Fernandes;A. Fiasson;G. Fontaine;A. Förster;M. Füßling;Y. A. Gallant;H. Gast;L. Gérard;D. Gerbig;B. Giebels;J. F. Glicenstein;B. Glück;P. Goret;D. Göring;S. Häffner;J. D. Hague;D. Hampf;M. Hauser;S. Heinz;G. Heinzelmann;G. Henri;G. Hermann;J. A. Hinton;A. Hoffmann;W. Hofmann;P. Hofverberg;M. Holler;D. Horns;A. Jacholkowska;O. C. de Jager;C. Jahn;M. Jamrozy;I. Jung;M. A. Kastendieck;K. Katarzyński;U. Katz;S. Kaufmann;D. Keogh;D. Khangulyan;B. Khélifi;D. Klochkov;W. Kluźniak;T. Kneiske;N.u. Komin;K. Kosack;R. Kossakowski;H. Laffon;G. Lamanna;D. Lennarz;T. Lohse;A. Lopatin;C. C. Lu;V. Marandon;A. Marcowith;J. Masbou;D. Maurin;N. Maxted;M. Mayer;T. J. L. McComb;M. C. Medina;J. Méhault;R. Moderski;E. Moulin;C. L. Naumann;M. Naumann Godo;M. de Naurois;D. Nedbal;D. Nekrassov;N. Nguyen;B. Nicholas;J. Niemiec;S. J. Nolan;S. Ohm;E. de Oña Wilhelmi;B. Opitz;M. Ostrowski;I. Oya;M. Panter;M. Paz Arribas;G. Pedaletti;G. Pelletier;P. O. Petrucci;S. Pita;G. Pühlhofer;M. Punch;A. Quirrenbach;M. Raue;S. M. Rayner;A. Reimer;O. Reimer;M. Renaud;R. de los Reyes;F. Rieger;J. Ripken;L. Rob;S. Rosier Lees;G. Rowell;B. Rudak;C. B. Rulten;J. Ruppel;V. Sahakian;D. A. Sanchez;A. Santangelo;R. Schlickeiser;F. M. Schöck;A. Schulz;U. Schwanke;S. Schwarzburg;S. Schwemmer;F. Sheidaei;J. L. Skilton;H. Sol;G. Spengler;Ł. Stawarz;R. Steenkamp;C. Stegmann;F. Stinzing;K. Stycz;I. Sushch;A. Szostek;J. P. Tavernet;R. Terrier;M. Tluczykont;K. Valerius;C. van Eldik;G. Vasileiadis;C. Venter;J. P. Vialle;A. Viana;P. Vincent;H. J. Völk;F. Volpe;S. Vorobiov;M. Vorster;S. J. Wagner;M. Ward;R. White;A. Wierzcholska;M. Zacharias;A. Zajczyk;A. A. Zdziarski;A. Zech;H. S. Zechlin;J. Aleksić;L. A. Antonelli;P. Antoranz;M. Backes;J. A. Barrio;D. Bastieri;J. Becerra González;W. Bednarek;A. Berdyugin;K. Berger;E. Bernardini;A. Biland;O. Blanch;R. K. Bock;A. Boller;G. Bonnoli;D. Borla Tridon;I. Braun;T. Bretz;A. Cañellas;E. Carmona;A. Carosi;P. Colin;E. Colombo;J. L. Contreras;J. Cortina;L. Cossio;S. Covino;F. Dazzi;A. De Angelis;E. De Cea del Pozo;B. De Lotto;C. Delgado Mendez;A. Diago Ortega;M. Doert;A. Domínguez;D. Dominis Prester;D. Dorner;M. Doro;D. Elsaesser;D. Ferenc;M. V. Fonseca;L. Font;C. Fruck;R. J. García López;M. Garczarczyk;D. Garrido;G. Giavitto;N. Godinović;D. Hadasch;D. Häfner;A. Herrero;D. Hildebrand;D. Höhne Mönch;J. Hose;D. Hrupec;B. Huber;T. Jogler;S. Klepser;T. Krähenbühl;J. Krause;A. La Barbera;D. Lelas;E. Leonardo;E. Lindfors;S. Lombardi;M. López;E. Lorenz;M. Makariev;G. Maneva;N. Mankuzhiyil;K. Mannheim;L. Maraschi;M. Mariotti;M. Martínez;D. Mazin;M. Meucci;J. M. Miranda;R. Mirzoyan;H. Miyamoto;J. Moldón;A. Moralejo;P. Munar;D. Nieto;K. Nilsson;R. Orito;I. Oya;D. Paneque;R. Paoletti;S. Pardo;J. M. Paredes;S. Partini;M. Pasanen;F. Pauss;M. A. Perez Torres;M. Persic;L. Peruzzo;M. Pilia;J. Pochon;F. Prada;P. G. Prada Moroni;E. Prandini;I. Puljak;I. Reichardt;R. Reinthal;W. Rhode;M. Ribó;J. Rico;S. Rügamer;A. Saggion;K. Saito;T. Y. Saito;M. Salvati;K. Satalecka;V. Scalzotto;V. Scapin;C. Schultz;T. Schweizer;M. Shayduk;S. N. Shore;A. Sillanpää;J. Sitarek;D. Sobczynska;F. Spanier;S. Spiro;A. Stamerra;B. Steinke;J. Storz;N. Strah;T. Surić;L. Takalo;H. Takami;F. Tavecchio;P. Temnikov;T. Terzić;D. Tescaro;M. Teshima;M. Thom;O. Tibolla;D. F. Torres;A. Treves;H. Vankov;P. Vogler;R. M. Wagner;Q. Weitzel;V. Zabalza;F. Zandanel;R. Zanin;T. Arlen;T. Aune;M. Beilicke;W. Benbow;A. Bouvier;S. M. Bradbury;J. H. Buckley;V. Bugaev;K. Byrum;A. Cannon;A. Cesarini;L. Ciupik;M. P. Connolly;W. Cui;R. Dickherber;C. Duke;M. Errando;A. Falcone;J. P. Finley;G. Finnegan;L. Fortson;A. Furniss;N. Galante;D. Gall;S. Godambe;S. Griffin;J. Grube;G. Gyuk;D. Hanna;J. Holder;H. Huan;C. M. Hui;P. Kaaret;N. Karlsson;M. Kertzman;Y. Khassen;D. Kieda;H. Krawczynski;F. Krennrich;M. J. Lang;S. LeBohec;G. Maier;S. McArthur;A. McCann;P. Moriarty;R. Mukherjee;P. D. Nuñez;R. A. Ong;M. Orr;A. N. Otte;N. Park;J. S. Perkins;A. Pichel;M. Pohl;H. Prokoph;K. Ragan;L. C. Reyes;P. T. Reynolds;E. Roache;H. J. Rose;J. Ruppel;M. Schroedter;G. H. Sembroski;G. D. Şentürk;I. Telezhinsky;G. Tešić;M. Theiling;S. Thibadeau;A. Varlotta;V. V. Vassiliev;M. Vivier;S. P. Wakely;T. C. Weekes;D. A. Williams;B. Zitzer;U. Barres de Almeida;M. Cara;C. Casadio;C. C. Cheung;W. McConville;F. Davies;A. Doi;G. Giovannini;M. Giroletti;K. Hada;P. Hardee;D. E. Harris;W. Junor;M. Kino;N. P. Lee;C. Ly;J. Madrid;MASSARO, Francesco;C. G. Mundell;H. Nagai;E. S. Perlman;I. A. Steele;R. C. Walker;D. L. Wood
2012-01-01
Abstract
The giant radio galaxyM87 with its proximity (16Mpc), famous jet, and very massive black hole ((3−6)×109 M)
provides a unique opportunity to investigate the origin of very high energy (VHE; E>100 GeV) γ -ray emission
generated in relativistic outflows and the surroundings of supermassive black holes. M 87 has been established as a
VHE γ -ray emitter since 2006. The VHE γ -ray emission displays strong variability on timescales as short as a day.
In this paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and VERITAS instruments
in 2010 are reported. During the campaign, a flare at VHE was detected triggering further observations at VHE
(H.E.S.S.), X-rays (Chandra), and radio (43 GHz Very Long Baseline Array, VLBA). The excellent sampling
of the VHE γ -ray light curve enables one to derive a precise temporal characterization of the flare: the single,
isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay
times of τ rise = (1.69 ± 0.30) days and τ
decay = (0.611 ± 0.080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share
very similar timescales (∼day), peak fluxes (Φ>0.35 TeV (1–3) × 10−11 photons cm−2 s−1), and VHE spectra.
VLBA radio observations of 43 GHz of the inner jet regions indicate no enhanced flux in 2010 in contrast to
observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE
flare. On the other hand, Chandra X-ray observations taken ∼3 days after the peak of the VHE γ -ray emission
reveal an enhanced flux from the core (flux increased by factor ∼2; variability timescale <2 days). The long-term
(2001–2010) multi-wavelength (MWL) light curve of M 87, spanning from radio to VHE and including data from
Hubble Space Telescope, Liverpool Telescope, Very Large Array, and European VLBI Network, is used to further
investigate the origin of the VHE γ -ray emission. No unique, common MWL signature of the three VHE flares has
been identified. In the outer kiloparsec jet region, in particular in HST-1, no enhancedMWLactivity was detected in
2008 and 2010, disfavoring it as the origin of the VHE flares during these years. Shortly after two of the three flares
(2008 and 2010), the X-ray core was observed to be at a higher flux level than its characteristic range (determined
from more than 60 monitoring observations: 2002–2009). In 2005, the strong flux dominance of HST-1 could have
suppressed the detection of such a feature. Published models for VHE γ -ray emission from M 87 are reviewed in
the light of the new data.
FRANCIA GERMANIA REGNO UNITO DI GRAN BRETAGNA SPAGNA STATI UNITI D'AMERICA ARGENTINA ARMENIA AUSTRALIA AUSTRIA BULGARIA CANADA CROAZIA FINLANDIA GIAPPONE IRLANDA NAMIBIA POLONIA REPUBBLICA CECA REPUBBLICA SUDAFRICANA SVEZIA SVIZZERA
4 – prodotto già presente in altro archivio Open Access (arXiv, REPEC…)
262
444
A. Abramowski;F. Acero;F. Aharonian;A. G. Akhperjanian;G. Anton;A. Balzer;A. Barnacka;U. Barres de Almeida;Y. Becherini;J. Becker;B. Behera...espandi
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/154216
Citazioni
ND
152
136
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione.
La simulazione si basa sui dati IRIS e presenta gli indicatori calcolati alla data indicata sul report. Si ricorda che in sede di domanda ASN presso il MIUR gli indicatori saranno invece calcolati a partire dal 1° gennaio rispettivamente del quinto/decimo/quindicesimo anno precedente la scadenza del quadrimestre di presentazione della domanda (art 2 del DM 598/2018).
In questa simulazione pertanto il valore degli indicatori potrà differire da quello conteggiato all’atto della domanda ASN effettuata presso il MIUR a seguito di:
Correzioni imputabili a eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori.
Presenza di eventuali errori di catalogazione e/o dati mancanti in IRIS
Variabilità nel tempo dei valori citazionali (per i settori bibliometrici)
Variabilità della finestra temporale considerata in funzione della sessione di domanda ASN a cui si partecipa.
La presente simulazione è stata realizzata sulla base delle regole riportate nel DM 598/2018 e dell'allegata Tabella A e delle specifiche definite all'interno del Focus Group Cineca relativo al modulo IRIS ER. Il Cineca non si assume alcuna responsabilità in merito all'uso che il diretto interessato o terzi faranno della simulazione.