We link optimal filtering for hidden Markov models to the notion of duality for Markov processes. We show that when the signal is dual to a process that has two components, one deterministic and one a pure death process, and with respect to functions that define changes of measure conjugate to the emission density, the filtering distributions evolve in the family of finite mixtures of such measures and the filter can be computed at a cost that is polynomial in the number of observations. Special cases of our framework include the Kalman filter, and computable filters for the Cox–Ingersoll–Ross process and the one-dimensional Wright–Fisher process, which have been investigated before. The dual we obtain for the Cox–Ingersoll–Ross process appears to be new in the literature.

Optimal filtering and the dual process

RUGGIERO, MATTEO
2014-01-01

Abstract

We link optimal filtering for hidden Markov models to the notion of duality for Markov processes. We show that when the signal is dual to a process that has two components, one deterministic and one a pure death process, and with respect to functions that define changes of measure conjugate to the emission density, the filtering distributions evolve in the family of finite mixtures of such measures and the filter can be computed at a cost that is polynomial in the number of observations. Special cases of our framework include the Kalman filter, and computable filters for the Cox–Ingersoll–Ross process and the one-dimensional Wright–Fisher process, which have been investigated before. The dual we obtain for the Cox–Ingersoll–Ross process appears to be new in the literature.
2014
20
4
1999
2019
http://projecteuclid.org/euclid.bj/1411134451
optimal filtering; Bayesian conjugacy; Cox–Ingersoll–Ross proces; finite mixture models; hidden Markov model
Omiros Papaspiliopoulos; Matteo Ruggiero
File in questo prodotto:
File Dimensione Formato  
2014-BEJ.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 212.87 kB
Formato Adobe PDF
212.87 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/154767
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact