We investigate the decay for $|x|\rightarrow \infty$ of weak Sobolev type solutions of semilinear nonlocal equations $Pu=F(u)$. We consider the case when $P=p(D)$ is an elliptic Fourier multiplier with polyhomogeneous symbol $p(\xi)$ and derive algebraic decay estimates in terms of weighted Sobolev norms. Our basic example is the celebrated Benjamin-Ono equation \begin{equation} \label{BO}(|D|+c)u=u^2, \qquad c>0,\end{equation} for internal solitary waves of deep stratified fluids. Their profile presents algebraic decay, in strong contrast with the exponential decay for KdV shallow water waves.
Decay estimates for solutions of nonlocal semilinear equations
CAPPIELLO, Marco;RODINO, Luigi Giacomo
2015-01-01
Abstract
We investigate the decay for $|x|\rightarrow \infty$ of weak Sobolev type solutions of semilinear nonlocal equations $Pu=F(u)$. We consider the case when $P=p(D)$ is an elliptic Fourier multiplier with polyhomogeneous symbol $p(\xi)$ and derive algebraic decay estimates in terms of weighted Sobolev norms. Our basic example is the celebrated Benjamin-Ono equation \begin{equation} \label{BO}(|D|+c)u=u^2, \qquad c>0,\end{equation} for internal solitary waves of deep stratified fluids. Their profile presents algebraic decay, in strong contrast with the exponential decay for KdV shallow water waves.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
pdfeditoriale.pdf
Accesso riservato
Descrizione: Articolo principale
Tipo di file:
PDF EDITORIALE
Dimensione
9.44 MB
Formato
Adobe PDF
|
9.44 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
CappielloGramchevRodinorevised.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
210.45 kB
Formato
Adobe PDF
|
210.45 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.