Although the molecular links underlying the causative relationship between chronic low-grade inflammation and insulin resistance are not completely understood, compelling evidence suggests a pivotal role of the NLRP3 inflammasome. Here we tested the hypothesis that either a selective pharmacological inhibition or a genetic down-regulation of the NLRP3 inflammasome results in reduction of the diet-induced metabolic alterations. Male C57/BL6 wild-type mice and NLRP3(-/-) littermates were fed control diet or high-fat high-fructose diet (HD). A sub-group of HD-fed wild-type mice was treated with the NLRP3 inflammasome inhibitor BAY 11-7082 (3 mg/kg, i.p.). HD-feeding increased plasma and hepatic lipids and impaired glucose homeostasis and renal function. Renal and hepatic injury was associated with robust increases in pro-fibrogenic markers, while only minimal fibrosis was recorded. None of these metabolic abnormalities were detected in HD-fed NLRP3(-/-) mice, and they were dramatically reduced in HD-mice treated with the NLRP3 inflammasome inhibitor. BAY 11-7082 also attenuated the diet-induced increase in NLRP3 inflammasome expression, resulting in inhibition of caspase-1 activation and interleukin-(IL)-1β and IL-18 production (in liver and kidney). Interestingly, BAY 11-7082, but not gene silencing, inhibited NF-κB nuclear translocation. Overall, these results demonstrate that the selective pharmacological modulation of the NLRP3 inflammasome attenuates the metabolic abnormalities and the related organ injury/dysfunction caused by chronic exposure to HD, with effects similar to those obtained by NLRP3 gene silencing.
Targeting the NLRP3 inflammasome to reduce diet-induced metabolic abnormalities in mice
CHIAZZA, FAUSTO;BENETTI, ELISA;MASTROCOLA, Raffaella;NIGRO, DEBORA;CUTRIN, Juan Carlos;SERPE, Loredana;ARAGNO, Manuela;FANTOZZI, Roberto;COLLINO, Massimo
Co-last
2015-01-01
Abstract
Although the molecular links underlying the causative relationship between chronic low-grade inflammation and insulin resistance are not completely understood, compelling evidence suggests a pivotal role of the NLRP3 inflammasome. Here we tested the hypothesis that either a selective pharmacological inhibition or a genetic down-regulation of the NLRP3 inflammasome results in reduction of the diet-induced metabolic alterations. Male C57/BL6 wild-type mice and NLRP3(-/-) littermates were fed control diet or high-fat high-fructose diet (HD). A sub-group of HD-fed wild-type mice was treated with the NLRP3 inflammasome inhibitor BAY 11-7082 (3 mg/kg, i.p.). HD-feeding increased plasma and hepatic lipids and impaired glucose homeostasis and renal function. Renal and hepatic injury was associated with robust increases in pro-fibrogenic markers, while only minimal fibrosis was recorded. None of these metabolic abnormalities were detected in HD-fed NLRP3(-/-) mice, and they were dramatically reduced in HD-mice treated with the NLRP3 inflammasome inhibitor. BAY 11-7082 also attenuated the diet-induced increase in NLRP3 inflammasome expression, resulting in inhibition of caspase-1 activation and interleukin-(IL)-1β and IL-18 production (in liver and kidney). Interestingly, BAY 11-7082, but not gene silencing, inhibited NF-κB nuclear translocation. Overall, these results demonstrate that the selective pharmacological modulation of the NLRP3 inflammasome attenuates the metabolic abnormalities and the related organ injury/dysfunction caused by chronic exposure to HD, with effects similar to those obtained by NLRP3 gene silencing.File | Dimensione | Formato | |
---|---|---|---|
molmed.2015.1-7.pdf Prima parte
Accesso aperto
Descrizione: Prima parte p. 1-7
Tipo di file:
PDF EDITORIALE
Dimensione
5.61 MB
Formato
Unknown
|
5.61 MB | Unknown | Visualizza/Apri |
molmed.2015.8-13.pdf
Accesso aperto
Descrizione: Seconda parte p. 8-13
Tipo di file:
PDF EDITORIALE
Dimensione
5.45 MB
Formato
Adobe PDF
|
5.45 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.