There are prospects for using novel feeds from various sources to provide ruminants with alternative sources of protein and energy such as by-products, and animal wastes. Rabbit feces are a concentrated source of fiber and could have commercial potential both as input biomass in anaerobic processes for biogas production, as well as a fibrous source for ruminal degradation. The aims of this work were to assess the potential as ruminant feeding and as biogas production of rabbit feces, in comparison with 12 crops. The chemical composition and the potential and experimental in vitro true digestibility (IVTD) and neutral detergent fiber digestibility (NDFD) of 148 feces samples were determined by using chemical methods, Daisy system digestibility and/or NIRS predictions. The average biomethane potential (BMP) was 286 ± 10 lCH4/kg SV with -4% vs. the crops average. Milk forage unit (milk FU), IVTD and NDFD of feces were 0.54 ± 0.06 milk FU/kg DM, 74% ± 3% and 50% ± 5%, respectively, with comparisons of -19%, -11% and -24% vs. the crops average. Reconstruction of the potential values based on the chemical constituents but using the crop partial least square model well agreed with the NIRS calibrations and cross-validation. In a global NIRS calibration of the feces and crops the relative predicted deviation for IVTD, NDFD and milk FU were 3.1, 2.9 and 2.6, respectively, and only 1.5 for BMP. Running the Daisy system for rabbit feces in rumen fluid gave some inconsistencies, weakened the functional relationships, and appeared not to be correlated with the potential values of IVTD and NDFD. Nevertheless, the energetic potential of feces appears to be similar to some conventional crops at different degrees of maturity. Thus we conclude that rabbit feces has potential value as a ruminant feed and for biogas production.

Rabbit Feces as Feed for Ruminants and as an Energy Source

TASSONE, Sonia;GASCO, Laura;
2014-01-01

Abstract

There are prospects for using novel feeds from various sources to provide ruminants with alternative sources of protein and energy such as by-products, and animal wastes. Rabbit feces are a concentrated source of fiber and could have commercial potential both as input biomass in anaerobic processes for biogas production, as well as a fibrous source for ruminal degradation. The aims of this work were to assess the potential as ruminant feeding and as biogas production of rabbit feces, in comparison with 12 crops. The chemical composition and the potential and experimental in vitro true digestibility (IVTD) and neutral detergent fiber digestibility (NDFD) of 148 feces samples were determined by using chemical methods, Daisy system digestibility and/or NIRS predictions. The average biomethane potential (BMP) was 286 ± 10 lCH4/kg SV with -4% vs. the crops average. Milk forage unit (milk FU), IVTD and NDFD of feces were 0.54 ± 0.06 milk FU/kg DM, 74% ± 3% and 50% ± 5%, respectively, with comparisons of -19%, -11% and -24% vs. the crops average. Reconstruction of the potential values based on the chemical constituents but using the crop partial least square model well agreed with the NIRS calibrations and cross-validation. In a global NIRS calibration of the feces and crops the relative predicted deviation for IVTD, NDFD and milk FU were 3.1, 2.9 and 2.6, respectively, and only 1.5 for BMP. Running the Daisy system for rabbit feces in rumen fluid gave some inconsistencies, weakened the functional relationships, and appeared not to be correlated with the potential values of IVTD and NDFD. Nevertheless, the energetic potential of feces appears to be similar to some conventional crops at different degrees of maturity. Thus we conclude that rabbit feces has potential value as a ruminant feed and for biogas production.
2014
4
755
766
http://www.mdpi.com/2076-2615/4/4/755
feces; rabbit; feed values; ruminant; biomethane potential; digestion; NIRS
Pier Giorgio Peiretti; Sonia Tassone; Francesco Gai; Laura Gasco; Giorgio Masoero
File in questo prodotto:
File Dimensione Formato  
animals-04-00755-v2.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 489.96 kB
Formato Adobe PDF
489.96 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/155586
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact