Camellia japonica L. is an acidophilic ornamental shrub of high economic value that has its center of origin in Japan and has been introduced in several European environmental niches. This exotic species forms arbuscular mycorrhizas (AM), known for their ability to positively affect plant growth. However, AM fungal communities associated to C. japonica in the field have never been characterized. For the first time, the AM fungal community naturally selected by C. japonica was screened in three sites located on the shores of Lake Maggiore (Italy), where specimens of this plant were introduced in the nineteenth century. Mycorrhizal levels were assessed, and the AM fungal communities associated to roots and soil were molecularly characterized based on the small subunit (SSU) rDNA region. The frequency of mycorrhizal roots was high in all sampled root systems (>90 %). Overall, 39 Operational Taxonomic Units (OTUs; 22 Glomerales, 9 Paraglomerales, 7 Archaeosporales, and 1 Diversisporales) were found in the root and soil samples. OTU richness did not significantly differ between the root and the soil niche (5.7 ± 0.6 and 8.0 ± 1.1 average OTUs per sample, respectively) and the three sites analyzed (7.5 ± 0.7, 5.2 ± 1.0, and 7.8 ± 1.5 average OTUs per sample in the three sites, respectively). The AM fungal community composition significantly differed between root-colonizing and soil-dwelling communities and among the three sites under study. Data show a major involvement of edaphic factors, such as available N sources, P, Mg, and K content in soil and soil compaction, in the structuring of the AM fungal communities.

Edaphic factors trigger diverse AM fungal communities associated to exotic camellias in closely located Lake Maggiore (Italy) sites

BORRIELLO, ROBERTO;BERRUTI, ANDREA;LUMINI, ERICA;DELLA BEFFA, Maria Teresa;SCARIOT, VALENTINA;BIANCIOTTO, VALERIA
2014-01-01

Abstract

Camellia japonica L. is an acidophilic ornamental shrub of high economic value that has its center of origin in Japan and has been introduced in several European environmental niches. This exotic species forms arbuscular mycorrhizas (AM), known for their ability to positively affect plant growth. However, AM fungal communities associated to C. japonica in the field have never been characterized. For the first time, the AM fungal community naturally selected by C. japonica was screened in three sites located on the shores of Lake Maggiore (Italy), where specimens of this plant were introduced in the nineteenth century. Mycorrhizal levels were assessed, and the AM fungal communities associated to roots and soil were molecularly characterized based on the small subunit (SSU) rDNA region. The frequency of mycorrhizal roots was high in all sampled root systems (>90 %). Overall, 39 Operational Taxonomic Units (OTUs; 22 Glomerales, 9 Paraglomerales, 7 Archaeosporales, and 1 Diversisporales) were found in the root and soil samples. OTU richness did not significantly differ between the root and the soil niche (5.7 ± 0.6 and 8.0 ± 1.1 average OTUs per sample, respectively) and the three sites analyzed (7.5 ± 0.7, 5.2 ± 1.0, and 7.8 ± 1.5 average OTUs per sample in the three sites, respectively). The AM fungal community composition significantly differed between root-colonizing and soil-dwelling communities and among the three sites under study. Data show a major involvement of edaphic factors, such as available N sources, P, Mg, and K content in soil and soil compaction, in the structuring of the AM fungal communities.
2014
-
-
AM fungal biodiversity; Arbuscular mycorrhizal fungi; Exotic plant; Soil physicochemical properties; SSU rDNA
Borriello R; Berruti A; Lumini E; Della Beffa MT; Scariot V; Bianciotto V
File in questo prodotto:
File Dimensione Formato  
AMF_camellia_lago maggiore.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 849.12 kB
Formato Adobe PDF
849.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Berruti et al 2014_Edaphic factors_AMF_camellias.pdf

Open Access dal 27/09/2015

Descrizione: articolo_versione finale dell'autore
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 11.56 MB
Formato Adobe PDF
11.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/156893
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 19
social impact