We study a dynamic game in which players can steal parts of a homogeneous and perfectly divisible pie from each other. The effectiveness of a player’s theft is a random function which is stochastically increasing in the share of the pie the agent currently owns. We show how the incentives to preempt or to follow the rivals change with the number of players involved in the game and investigate the conditions that lead to the occurrence of symmetric or asymmetric equilibria.

Optimal stealing time

GALLICE, Andrea Pier Giovanni
2016-01-01

Abstract

We study a dynamic game in which players can steal parts of a homogeneous and perfectly divisible pie from each other. The effectiveness of a player’s theft is a random function which is stochastically increasing in the share of the pie the agent currently owns. We show how the incentives to preempt or to follow the rivals change with the number of players involved in the game and investigate the conditions that lead to the occurrence of symmetric or asymmetric equilibria.
2016
80
3
451
462
http://link.springer.com/article/10.1007/s11238-015-9507-y
Stealing, Stochastic games, Optimal timing, Pie allocation
Gallice, Andrea
File in questo prodotto:
File Dimensione Formato  
Gallice16 - Optimal Stealing Time - TD.pdf

Open Access dal 02/04/2017

Descrizione: Articolo principale
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 157.01 kB
Formato Adobe PDF
157.01 kB Adobe PDF Visualizza/Apri
Gallice16 - Optimal Stealing Time - TD.pdf

Accesso riservato

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 431.31 kB
Formato Adobe PDF
431.31 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1571711
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact