Given a sample of size n from a population of species with unknown pro- portions, a common problem of practical interest consists in making inference on the probability Dn(l) that the (n+1)-th draw coincides with a species with frequency l in the sample, for any l ≥ 0. Under the general framework of Gibbs-type priors we show how to derive credible intervals for a Bayesian nonparametric estimator of Dn(l).

On Bayesian nonparametric inference for discovery probabilities

FAVARO, STEFANO;
2016-01-01

Abstract

Given a sample of size n from a population of species with unknown pro- portions, a common problem of practical interest consists in making inference on the probability Dn(l) that the (n+1)-th draw coincides with a species with frequency l in the sample, for any l ≥ 0. Under the general framework of Gibbs-type priors we show how to derive credible intervals for a Bayesian nonparametric estimator of Dn(l).
2016
48th Scientific Meeting of the Italian Statistical Society
Salerno
Giugno 2016
Proceedings of the 48th Scientific Meeting of the Italian Statistical Society
Electronic
1
5
9788861970618
Bayesian nonparametrics, credible intervals, discovery probabilities
J. Arbel; S. Favaro; N. Nipoti; Y.W. Teh
File in questo prodotto:
File Dimensione Formato  
credible_discovery.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 105.94 kB
Formato Adobe PDF
105.94 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1611615
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact