Compounds with fluorescence in the humic-like substances (HULIS) region are known to be formed under conditions where the oxidation (which could lead to the oligomerization) of phenolic compounds is operational, because of the formation of phenoxy radicals. However, there was no evidence to date that such fluorescence emission was really due to phenol oligomers. In this work, the fluorescence of phenol and some of its oligomers was studied by computational methods and it was compared with experimental data, when allowed by the availability of commercial standards. The oligomer fluorescence depends on the contribution of different stable conformers, which differ from one another for the dihedral angles between the aromatic rings. Differences in the dihedral angles are also observed between the ground states and the corresponding excited singlet states. The predicted wavelengths of fluorescence emission increase with increasing the number of aromatic rings, up to a plateau at around 450 nm. Compounds with more than three-four aromatic rings are not expected to show emission in a different range, because the transitions causing fluorescence involve only three consecutive rings. These results support the hypothesis that oligomers account for the fluorescence emission in the HULIS region, which has been observed under the photochemical and photosensitized transformation of phenolic compounds.

Computational assessment of the fluorescence emission of phenol oligomers: A possible insight into the fluorescence properties of humic-like substances (HULIS)

BARSOTTI, FRANCESCO;GHIGO, Giovanni;VIONE, Davide Vittorio
2016-01-01

Abstract

Compounds with fluorescence in the humic-like substances (HULIS) region are known to be formed under conditions where the oxidation (which could lead to the oligomerization) of phenolic compounds is operational, because of the formation of phenoxy radicals. However, there was no evidence to date that such fluorescence emission was really due to phenol oligomers. In this work, the fluorescence of phenol and some of its oligomers was studied by computational methods and it was compared with experimental data, when allowed by the availability of commercial standards. The oligomer fluorescence depends on the contribution of different stable conformers, which differ from one another for the dihedral angles between the aromatic rings. Differences in the dihedral angles are also observed between the ground states and the corresponding excited singlet states. The predicted wavelengths of fluorescence emission increase with increasing the number of aromatic rings, up to a plateau at around 450 nm. Compounds with more than three-four aromatic rings are not expected to show emission in a different range, because the transitions causing fluorescence involve only three consecutive rings. These results support the hypothesis that oligomers account for the fluorescence emission in the HULIS region, which has been observed under the photochemical and photosensitized transformation of phenolic compounds.
2016
315
87
93
Barsotti, Francesco; Ghigo, Giovanni; Vione, Davide
File in questo prodotto:
File Dimensione Formato  
JPPA2016_HAfluo.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
HAfluo_JPPA2016.pdf

Open Access dal 02/01/2019

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 4.61 MB
Formato Adobe PDF
4.61 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1616072
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 44
social impact