InthispaperwestudythePlateauproblemfordisk-typesurfacescontainedinconic regions of R3 and with prescribed mean curvature H . Assuming a suitable growth condition on H , we prove existence of a least energy H -surface X spanning an arbitrary Jordan curve taken in the cone. Then we address the problem of describing such surface X as radial graph when the Jordan curve admits a radial representation. Assuming a suitable monotonicity condition on the mapping λ → λH(λp) and some strong convexity-type condition on the radial projection of the Jordan curve , we show that the H-surface X can be represented as a radial graph.

Existence of stable H-surfaces in cones and their representation as radial graphs

CALDIROLI, Paolo;IACOPETTI, ALESSANDRO
2016-01-01

Abstract

InthispaperwestudythePlateauproblemfordisk-typesurfacescontainedinconic regions of R3 and with prescribed mean curvature H . Assuming a suitable growth condition on H , we prove existence of a least energy H -surface X spanning an arbitrary Jordan curve taken in the cone. Then we address the problem of describing such surface X as radial graph when the Jordan curve admits a radial representation. Assuming a suitable monotonicity condition on the mapping λ → λH(λp) and some strong convexity-type condition on the radial projection of the Jordan curve , we show that the H-surface X can be represented as a radial graph.
2016
55
6
1
21
http://link.springer.com/article/10.1007/s00526-016-1074-8
https://arxiv.org/abs/1512.03789
H-surface, prescribed mean curvature, radial graph
Caldiroli, Paolo; Iacopetti, Alessandro
File in questo prodotto:
File Dimensione Formato  
CalcVar2016.pdf

Accesso riservato

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 574.69 kB
Formato Adobe PDF
574.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1621439
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact