Let $\nu$ be a multiplicative arithmetic function with support of positive asymptotic density. We prove that for any not identically zero arithmetic function $f$ such that $\sum_{f(n) \neq 0} 1 / n < \infty$, the support of the Dirichlet convolution $f * \nu$ possesses a positive asymptotic density. When $f$ is a multiplicative function, we give also a quantitative version of this claim. This generalizes a previous result of P. Pollack and the author, concerning the support of M\"obius and Dirichlet transforms of arithmetic functions.
On the asymptotic density of the support of a Dirichlet convolution
SANNA, CARLO
2014-01-01
Abstract
Let $\nu$ be a multiplicative arithmetic function with support of positive asymptotic density. We prove that for any not identically zero arithmetic function $f$ such that $\sum_{f(n) \neq 0} 1 / n < \infty$, the support of the Dirichlet convolution $f * \nu$ possesses a positive asymptotic density. When $f$ is a multiplicative function, we give also a quantitative version of this claim. This generalizes a previous result of P. Pollack and the author, concerning the support of M\"obius and Dirichlet transforms of arithmetic functions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
convolution.pdf
Accesso aperto
Descrizione: Articolo principale
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
338.92 kB
Formato
Adobe PDF
|
338.92 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.