We show that there exists a positive constant $C$ such that the following holds: Given an infinite arithmetic progression $\A$ of real numbers and a sufficiently large integer $n$ (depending on $\A$), there needs at least $Cn$ geometric progressions to cover the first $n$ terms of $\A$. A similar result is presented, with the role of arithmetic and geometric progressions reversed.

Covering an arithmetic progression with geometric progressions and vice versa

SANNA, CARLO
2014-01-01

Abstract

We show that there exists a positive constant $C$ such that the following holds: Given an infinite arithmetic progression $\A$ of real numbers and a sufficiently large integer $n$ (depending on $\A$), there needs at least $Cn$ geometric progressions to cover the first $n$ terms of $\A$. A similar result is presented, with the role of arithmetic and geometric progressions reversed.
2014
10
6
1577
1582
http://www.worldscinet.com/ijnt/ijnt.shtml
https://arxiv.org/abs/1311.4331
Arithmetic progressions; covering problems; geometric progressions; squarefree numbers; Algebra and Number Theory
Sanna, Carlo
File in questo prodotto:
File Dimensione Formato  
covering.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 105.66 kB
Formato Adobe PDF
105.66 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1622117
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact