For any prime number $p$, let $J_p$ be the set of positive integers $n$ such that $p$ divides the numerator of the $n$-th harmonic number $H_n$. An old conjecture of Eswarathasan and Levine states that $J_p$ is finite. We prove that for $x \geq 1$ the number of integers in $J_p \cap [1,x]$ is less than $129p^{2/3} x^{0.765}$. In particular, $J_p$ has asymptotic density zero. Furthermore, we show that there exists a subset $S_p$ of the positive integers, with logarithmic density greater than $0.273$, and such that for any $n \in S_p$ the $p$-adic valuation of $H_n$ is equal to $- \lfloor \log_p n \rfloor$.

On the p-adic valuation of harmonic numbers

SANNA, CARLO
2016-01-01

Abstract

For any prime number $p$, let $J_p$ be the set of positive integers $n$ such that $p$ divides the numerator of the $n$-th harmonic number $H_n$. An old conjecture of Eswarathasan and Levine states that $J_p$ is finite. We prove that for $x \geq 1$ the number of integers in $J_p \cap [1,x]$ is less than $129p^{2/3} x^{0.765}$. In particular, $J_p$ has asymptotic density zero. Furthermore, we show that there exists a subset $S_p$ of the positive integers, with logarithmic density greater than $0.273$, and such that for any $n \in S_p$ the $p$-adic valuation of $H_n$ is equal to $- \lfloor \log_p n \rfloor$.
2016
166
41
46
http://www.elsevier.com/inca/publications/store/6/2/2/8/9/4/index.htt
Asymptotic density; Harmonic numbers; Logarithmic density; P-adic valuation; Algebra and Number Theory
Sanna, Carlo
File in questo prodotto:
File Dimensione Formato  
padicharm.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 254.2 kB
Formato Adobe PDF
254.2 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1622121
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact