Recent advances in molecular biology and Bioinformatics techniques have brought to an explosion of the information about the spatial organisation of the DNA inside the nucleus. In particular, 3C-based techniques are revealing the genome folding for many different cell types, and permit to create a more effective representation of the disposition of genes in the three-dimensional space. This information can be used to re-interpret heterogeneous genomic data (multi-omic) relying on 3D maps of the chromosome. The storage and computational requirements needed to accomplish such operations on raw sequenced data have to be fulfilled using HPC solutions, and the the Cloud paradigm is a valuable and convenient mean for delivering HPC to Bioinformatics. In this work we describe a data analysis work-flow that allows the integration and the interpretation of multi-omic data on a sort of ``topographical'' nuclear map, capable of representing the effective disposition of genes in a graph-based representation. We propose a cloud-based task farm pattern to orchestrate the services needed to accomplish genomic data analysis, where each service represents a special-purpose tool, playing a part in well known data analysis pipelines.
A cloud solution for multi-omics data integration
TORDINI, FABIO
2016-01-01
Abstract
Recent advances in molecular biology and Bioinformatics techniques have brought to an explosion of the information about the spatial organisation of the DNA inside the nucleus. In particular, 3C-based techniques are revealing the genome folding for many different cell types, and permit to create a more effective representation of the disposition of genes in the three-dimensional space. This information can be used to re-interpret heterogeneous genomic data (multi-omic) relying on 3D maps of the chromosome. The storage and computational requirements needed to accomplish such operations on raw sequenced data have to be fulfilled using HPC solutions, and the the Cloud paradigm is a valuable and convenient mean for delivering HPC to Bioinformatics. In this work we describe a data analysis work-flow that allows the integration and the interpretation of multi-omic data on a sort of ``topographical'' nuclear map, capable of representing the effective disposition of genes in a graph-based representation. We propose a cloud-based task farm pattern to orchestrate the services needed to accomplish genomic data analysis, where each service represents a special-purpose tool, playing a part in well known data analysis pipelines.File | Dimensione | Formato | |
---|---|---|---|
tordini_scalcom16.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
966.46 kB
Formato
Adobe PDF
|
966.46 kB | Adobe PDF | Visualizza/Apri |
tordini_scalcom16_ED.pdf
Accesso riservato
Descrizione: PDF EDITORIALE - IEEE
Tipo di file:
PDF EDITORIALE
Dimensione
991.51 kB
Formato
Adobe PDF
|
991.51 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.