We study a class of semilinear elliptic equations on spaces of tempered ultradistributions of Beurling and Roumieu type. Assuming that the linear part of the equation is a pseudodifferential operator of infinite order satisfying a suitable ellipticity condition we prove a regularity result in the functional setting above for weak Sobolev type solutions.
Semilinear pseudodifferential equations in spaces of tempered ultradistributions
CAPPIELLO, Marco;
2016-01-01
Abstract
We study a class of semilinear elliptic equations on spaces of tempered ultradistributions of Beurling and Roumieu type. Assuming that the linear part of the equation is a pseudodifferential operator of infinite order satisfying a suitable ellipticity condition we prove a regularity result in the functional setting above for weak Sobolev type solutions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
articolopubblicato.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
432.84 kB
Formato
Adobe PDF
|
432.84 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
semilinearCPP_1aug.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
349.47 kB
Formato
Adobe PDF
|
349.47 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.