This study followed the progression of lead nephropathy in male Sprague-Dawley rats (E) administered lead acetate (0.5%) continuously in drinking water for periods ranging from 1 to 12 months. Control animals (C) were pair-fed. Observations included renal pathology by light and electron microscopy, wet and dry kidney weights, and glomerular filtration rate (GFR) to assess renal function. Urinary excretion of lead, the enzymes N-acetyl-beta-D-glucosaminidase (NAG) and glutathione-S-transferase (GST), and brush border antigens (BB50, CG9, and HF5) were utilized to explore possible markers of kidney injury. GFR was increased significantly after three months of lead exposure, but was decreased significantly after 12 months. Kidney wet weights were significantly greater in E than C from three months on. Kidney dry weight/wet weight ratio was constant up to three months, but decreased in E at 12 months. Glomerular diameters were normal at all time periods; the nephromegaly was related primarily to hypertrophy of proximal tubules. Lead inclusion bodies were found in nuclei of proximal convoluted tubules and pars recta at all times. Tubular atrophy and interstitial fibrosis first appeared at six months, and increased in severity thereafter. Brush borders of proximal tubules were disrupted at one and three months, but recovered thereafter. Focal and segmental glomerulosclerosis was observed in 2 of 10 rats at 12 months. Arteries and arterioles remained normal at all time periods. Urinary NAG was elevated in E above C after three months of lead exposure. However, urinary NAG in C also increased with age, obscuring changes in the 12 month E rats. GST was elevated after three months of lead administration in E, not without an attendant age-related increase in C rats. In three-month E rats, urinary brush border antigens were increased above C, but were decreased at six and 12 months, correlating with the morphologic changes in brush border. We conclude that a high dose of lead in rats may initially stimulate both renal cortical hypertrophy and an increase in GFR. Later, the adverse effects of lead on the tubulointerstitium predominate, and GFR falls. The urinary marker, NAG, was abnormal in the early stages of the disease, but age-related changes obscured its utility at later stages; urinary GST appeared to be a more consistent marker of injury.

Experimental model of lead nephropathy. I. Continuous high-dose lead administration

BERGAMASCHI, Enrico;
1992-01-01

Abstract

This study followed the progression of lead nephropathy in male Sprague-Dawley rats (E) administered lead acetate (0.5%) continuously in drinking water for periods ranging from 1 to 12 months. Control animals (C) were pair-fed. Observations included renal pathology by light and electron microscopy, wet and dry kidney weights, and glomerular filtration rate (GFR) to assess renal function. Urinary excretion of lead, the enzymes N-acetyl-beta-D-glucosaminidase (NAG) and glutathione-S-transferase (GST), and brush border antigens (BB50, CG9, and HF5) were utilized to explore possible markers of kidney injury. GFR was increased significantly after three months of lead exposure, but was decreased significantly after 12 months. Kidney wet weights were significantly greater in E than C from three months on. Kidney dry weight/wet weight ratio was constant up to three months, but decreased in E at 12 months. Glomerular diameters were normal at all time periods; the nephromegaly was related primarily to hypertrophy of proximal tubules. Lead inclusion bodies were found in nuclei of proximal convoluted tubules and pars recta at all times. Tubular atrophy and interstitial fibrosis first appeared at six months, and increased in severity thereafter. Brush borders of proximal tubules were disrupted at one and three months, but recovered thereafter. Focal and segmental glomerulosclerosis was observed in 2 of 10 rats at 12 months. Arteries and arterioles remained normal at all time periods. Urinary NAG was elevated in E above C after three months of lead exposure. However, urinary NAG in C also increased with age, obscuring changes in the 12 month E rats. GST was elevated after three months of lead administration in E, not without an attendant age-related increase in C rats. In three-month E rats, urinary brush border antigens were increased above C, but were decreased at six and 12 months, correlating with the morphologic changes in brush border. We conclude that a high dose of lead in rats may initially stimulate both renal cortical hypertrophy and an increase in GFR. Later, the adverse effects of lead on the tubulointerstitium predominate, and GFR falls. The urinary marker, NAG, was abnormal in the early stages of the disease, but age-related changes obscured its utility at later stages; urinary GST appeared to be a more consistent marker of injury.
1992
41
1192
1203
KHALIL-MANESH F; GONICK HC; COHEN A; ALINOVI R; BERGAMASCHI E.; MUTTI A; ROSEN VJ.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1623169
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 98
  • ???jsp.display-item.citation.isi??? 89
social impact