We investigate the foundations of reasoning over infinite data structures by means of set-theoretical structures arising in the sheaf-theoretic semantics of higher-order intuitionistic logic. Our approach focuses on a natural notion of tiering involving an operation of restriction of elements to levels forming a complete Heyting algebra. We relate these tiered objects to fi- nal coalgebras and initial algebras of a wide class of endofunctors of the category of sets, and study their order and convergence properties. As a sample application, we derive a general proof principle for tiered objects.

Tiered objects

CARDONE, Felice
2016-01-01

Abstract

We investigate the foundations of reasoning over infinite data structures by means of set-theoretical structures arising in the sheaf-theoretic semantics of higher-order intuitionistic logic. Our approach focuses on a natural notion of tiering involving an operation of restriction of elements to levels forming a complete Heyting algebra. We relate these tiered objects to fi- nal coalgebras and initial algebras of a wide class of endofunctors of the category of sets, and study their order and convergence properties. As a sample application, we derive a general proof principle for tiered objects.
2016
149
3
263
295
http://www.iospress.nl/
approximation lemma; complete Heyting algebras; final coalgebras; infinite data structures; initial algebras; sheaves; Theoretical Computer Science; Algebra and Number Theory; Information Systems; Computational Theory and Mathematics
Alessi, Fabio; Cardone, Felice
File in questo prodotto:
File Dimensione Formato  
tiered.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 334.12 kB
Formato Adobe PDF
334.12 kB Adobe PDF Visualizza/Apri
Fundamenta Informaticae Volume 149 issue 3 2016 [doi 10.3233%2FFI-2016-1449] Alessi, Fabio; Cardone, Felice -- Tiered Objects.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 370.47 kB
Formato Adobe PDF
370.47 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1633801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact