The best occurrence of blueschist-facies lithologies in Himalaya is that of the Shergol Ophiolitic Mélange along the Indus suture zone in Ladakh region of north-western India. These lithologies are characterized by well preserved lawsonite-glaucophane-garnet-quartz assemblages. This paper presents for the first time the results of a detailed fluid inclusion study on these lithologies, in order to understand the fluid P-T evolution and its tectonic implications. The blueschist rocks from Shergol Ophiolitic Mélange record metamorphic peak conditions at ∼19 kbar, 470 °C. Several types of fluid inclusions are trapped in quartz and garnet, most of them being two-phase at room temperature. Three types of fluid inclusions have been recognised, basing on microtextures and fluid composition: Type-I are primary two-phase carbonic-aqueous fluid inclusions (VCO2 −LH2O); Type-II are twophase (LH2O −VH2O) aqueous fluid inclusions, either primary (Type-IIa) or secondary (Type-IIb); Type-III are reequilibrated fluid inclusions. In the Type-I primary carbonic-aqueous inclusions, H2O is strongly predominant with respect to CO2; the homogenization temperature of CO2 range from −7 to −2 °C. The clathrate melting temperature in such inclusions varies in between +7.1 and +8.6 °C. Type-II two-phase aqueous fluid inclusions show a wide range of salinity, from 7.8–14 wt.% NaCleq (Type-IIa) to 1.65–6.37 wt.% NaCleq (Type-IIb) with accuracy±0.4 wt.% NaCleq. Type-I and Type-IIa primary fluid inclusions are hosted in peak minerals (garnet and quartz included in garnet), therefore they were likely entrapped at, or near to, peak P-T conditions. The dominantly aqueous fluid of both Type-I and Type-IIa inclusions was most likely produced through metamorphic devolatilization reactions occurring in the subducting slab. Despite their primary nature, the isochores of Type-I and Type-IIa inclusions do not intersect the peak metamorphic conditions of the blueschist mineral assemblage, suggesting that these inclusions stretched or re-equilibrated during nearly isothermal decompression from 19 kbar to 3 kbar or less, at T =290 °C. This conclusion is further supported by their large variability in shapes and sizes which range from irregular inclusions (‘C’/arc shaped, hook shape and satellite type). This decompression stage was followed by nearly isobaric cooling, testified by the occurrence of dendritic networks of decrepitated and ‘imploded’ fluid inclusions.

A fluid inclusion study of blueschist-facies lithologies from the Indus suture zone, Ladakh (India): Implications for the exhumation of the subduction related Sapi-Shergol ophiolitic mélange

ROLFO, Franco;GROPPO, CHIARA TERESA;
2017-01-01

Abstract

The best occurrence of blueschist-facies lithologies in Himalaya is that of the Shergol Ophiolitic Mélange along the Indus suture zone in Ladakh region of north-western India. These lithologies are characterized by well preserved lawsonite-glaucophane-garnet-quartz assemblages. This paper presents for the first time the results of a detailed fluid inclusion study on these lithologies, in order to understand the fluid P-T evolution and its tectonic implications. The blueschist rocks from Shergol Ophiolitic Mélange record metamorphic peak conditions at ∼19 kbar, 470 °C. Several types of fluid inclusions are trapped in quartz and garnet, most of them being two-phase at room temperature. Three types of fluid inclusions have been recognised, basing on microtextures and fluid composition: Type-I are primary two-phase carbonic-aqueous fluid inclusions (VCO2 −LH2O); Type-II are twophase (LH2O −VH2O) aqueous fluid inclusions, either primary (Type-IIa) or secondary (Type-IIb); Type-III are reequilibrated fluid inclusions. In the Type-I primary carbonic-aqueous inclusions, H2O is strongly predominant with respect to CO2; the homogenization temperature of CO2 range from −7 to −2 °C. The clathrate melting temperature in such inclusions varies in between +7.1 and +8.6 °C. Type-II two-phase aqueous fluid inclusions show a wide range of salinity, from 7.8–14 wt.% NaCleq (Type-IIa) to 1.65–6.37 wt.% NaCleq (Type-IIb) with accuracy±0.4 wt.% NaCleq. Type-I and Type-IIa primary fluid inclusions are hosted in peak minerals (garnet and quartz included in garnet), therefore they were likely entrapped at, or near to, peak P-T conditions. The dominantly aqueous fluid of both Type-I and Type-IIa inclusions was most likely produced through metamorphic devolatilization reactions occurring in the subducting slab. Despite their primary nature, the isochores of Type-I and Type-IIa inclusions do not intersect the peak metamorphic conditions of the blueschist mineral assemblage, suggesting that these inclusions stretched or re-equilibrated during nearly isothermal decompression from 19 kbar to 3 kbar or less, at T =290 °C. This conclusion is further supported by their large variability in shapes and sizes which range from irregular inclusions (‘C’/arc shaped, hook shape and satellite type). This decompression stage was followed by nearly isobaric cooling, testified by the occurrence of dendritic networks of decrepitated and ‘imploded’ fluid inclusions.
2017
146
185
195
http://www.sciencedirect.com/science/journal/13679120
Blueschist; Fluid inclusions; Himalaya; Ladakh; Lawsonite; Geology; Earth-Surface Processes
Sachan, Himanshu Kumar; Kharya, Aditya; Singh, P. Chandra; Rolfo, Franco; Groppo, Chiara; Tiwari, Sameer K.
File in questo prodotto:
File Dimensione Formato  
Final MS JAES.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF Visualizza/Apri
2017_Sachan et al._fluid inclusion, blueschist, Sapi-Shergol, Ladakh.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 2.95 MB
Formato Adobe PDF
2.95 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1641102
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact