In this paper we propose a modified version of the classical collocation method and two spline collocation methods with high order of convergence, for the solution of integral equations on surfaces of R^3. Such methods are based on optimal superconvergent quasi-interpolants defined on type-2 triangulations and based on the Zwart-Powell quadratic box spline.

Numerical solution of surface integral equations based on spline quasi-interpolation

DAGNINO, Catterina;REMOGNA, Sara
2017-01-01

Abstract

In this paper we propose a modified version of the classical collocation method and two spline collocation methods with high order of convergence, for the solution of integral equations on surfaces of R^3. Such methods are based on optimal superconvergent quasi-interpolants defined on type-2 triangulations and based on the Zwart-Powell quadratic box spline.
17th International Conference Computational and Mathematical Methods in Science and Engineering
Rota, Cadiz - Spain
4-8 luglio 2017
Proceedings of the 17th International Conference Computational and Mathematical Methods in Science and Engineering
CMMSE
695
703
978-84-617-8694-7
http://cmmse.usal.es/cmmse2017/proceedings-and-instructions-for-authors
Surface integral equation, Spline quasi-interpolation
Dagnino, Catterina; Remogna, Sara
File in questo prodotto:
File Dimensione Formato  
DR_17.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 396.06 kB
Formato Adobe PDF
396.06 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1644110
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact