This paper proposes a method to infer the itinerary of cargo transported in shipping containers based on a large, heterogeneous and noisy dataset of Container Status Messages. Such itinerary information can be used to improve the risk analysis performed by authorities in their effort to secure the global trade and fight frauds. Our method, based on conditional random fields, is able not only to partition the original noisy dataset into appropriate sequences describing distinct shipments of containerized cargo but also to identify the messages that describe the various stages of the transportation. The experiments performed suggest that conditional random fields provide a high accuracy for this sequential pattern mining problem.
Inferring itineraries of containerized cargo through the application of Conditional Random Fields
SCHIFANELLA, CLAUDIO;
2014-01-01
Abstract
This paper proposes a method to infer the itinerary of cargo transported in shipping containers based on a large, heterogeneous and noisy dataset of Container Status Messages. Such itinerary information can be used to improve the risk analysis performed by authorities in their effort to secure the global trade and fight frauds. Our method, based on conditional random fields, is able not only to partition the original noisy dataset into appropriate sequences describing distinct shipments of containerized cargo but also to identify the messages that describe the various stages of the transportation. The experiments performed suggest that conditional random fields provide a high accuracy for this sequential pattern mining problem.File | Dimensione | Formato | |
---|---|---|---|
10-JISIC2014.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
195.04 kB
Formato
Adobe PDF
|
195.04 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.