For each positive integer $N$, let $S_N$ be the set of all polynomials $P(x) \in \Z[x]$ with degree less than $N$ and minimal positive integral over $[0,1]$. These polynomials are related to the distribution of prime numbers since $\int_0^1 P(x) \d x = \exp(-\psi(N))$, where $\psi$ is the second Chebyshev function. We prove that for any positive integer $N$ there exists $P(x) \in S_N$ such that $(x(1-x))^{\lfloor N / 3 \rfloor}$ divides $P(x)$ in $\Z[x]$. In fact, we show that the exponent $\lfloor N / 3 \rfloor$ cannot be improved. This result is analog to a previous of Aparicio concerning polynomials in $\Z[x]$ with minimal positive $L^\infty$ norm on $[0,1]$. Also, it is in some way a strengthening of a result of Bazzanella, who considered $x^{\lfloor N / 2 \rfloor}$ and $(1-x)^{\lfloor N / 2 \rfloor}$ instead of $(x(1-x))^{\lfloor N / 3 \rfloor}$.

A factor of integer polynomials with minimal integrals

SANNA, CARLO
2017-01-01

Abstract

For each positive integer $N$, let $S_N$ be the set of all polynomials $P(x) \in \Z[x]$ with degree less than $N$ and minimal positive integral over $[0,1]$. These polynomials are related to the distribution of prime numbers since $\int_0^1 P(x) \d x = \exp(-\psi(N))$, where $\psi$ is the second Chebyshev function. We prove that for any positive integer $N$ there exists $P(x) \in S_N$ such that $(x(1-x))^{\lfloor N / 3 \rfloor}$ divides $P(x)$ in $\Z[x]$. In fact, we show that the exponent $\lfloor N / 3 \rfloor$ cannot be improved. This result is analog to a previous of Aparicio concerning polynomials in $\Z[x]$ with minimal positive $L^\infty$ norm on $[0,1]$. Also, it is in some way a strengthening of a result of Bazzanella, who considered $x^{\lfloor N / 2 \rfloor}$ and $(1-x)^{\lfloor N / 2 \rfloor}$ instead of $(x(1-x))^{\lfloor N / 3 \rfloor}$.
2017
29
2
637
646
http://jtnb.cedram.org/cedram-bin/article/JTNB_2017__29_2_637_0.pdf
Chebyshev problem; Integer polynomials; Prime numbers; Algebra and Number Theory
Sanna, Carlo
File in questo prodotto:
File Dimensione Formato  
Sanna_JTNB.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 279.9 kB
Formato Adobe PDF
279.9 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1647071
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact