We prove that if $(u_n)_{n \geq 0}$ is a Lucas sequence satisfying some mild hypotheses, then the number of positive integers $n$ not exceeding $x$ and such that $n$ divides $u_n$ is less than \begin{equation*} x^{1-(1/2+o(1)) \log \log \log x / \log \log x} , \end{equation*} as $x \to \infty$. This both generalizes a result of Luca and Tron about the positive integers $n$ dividing the $n$-th Fibonacci number, and improves a previous upper bound due to Alba~Gonz\'{a}lez, Luca, Pomerance, and Shparlinski.

On numbers n dividing the nth term of a Lucas sequence

SANNA, CARLO
2017-01-01

Abstract

We prove that if $(u_n)_{n \geq 0}$ is a Lucas sequence satisfying some mild hypotheses, then the number of positive integers $n$ not exceeding $x$ and such that $n$ divides $u_n$ is less than \begin{equation*} x^{1-(1/2+o(1)) \log \log \log x / \log \log x} , \end{equation*} as $x \to \infty$. This both generalizes a result of Luca and Tron about the positive integers $n$ dividing the $n$-th Fibonacci number, and improves a previous upper bound due to Alba~Gonz\'{a}lez, Luca, Pomerance, and Shparlinski.
2017
13
3
725
734
http://www.worldscinet.com/ijnt/ijnt.shtml
divisibility; Lucas sequence; p-adic valuation; rank of apparition; Algebra and Number Theory
Sanna, Carlo
File in questo prodotto:
File Dimensione Formato  
onnumbersndiv.pdf

Open Access dal 02/04/2018

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 315.97 kB
Formato Adobe PDF
315.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1647072
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact