Let f is an element of Z[X] be a quadratic or cubic polynomial. We prove that there exists an integer G(f) >= 2 such that for every integer k >= G(f) one can find infinitely many integers n >= 0 with the property that none of f(n+1),f(n+2),...,f(n+k) is coprime to all the others. This extends previous results on linear polynomials and, in particular, on consecutive integers.

A coprimality condition on consecutive values of polynomials

SANNA, CARLO;
2017-01-01

Abstract

Let f is an element of Z[X] be a quadratic or cubic polynomial. We prove that there exists an integer G(f) >= 2 such that for every integer k >= G(f) one can find infinitely many integers n >= 0 with the property that none of f(n+1),f(n+2),...,f(n+k) is coprime to all the others. This extends previous results on linear polynomials and, in particular, on consecutive integers.
2017
908
915
Sanna, Carlo; Szikszai, Márton
File in questo prodotto:
File Dimensione Formato  
SannaSzikszai_Revision20171407.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 286.39 kB
Formato Adobe PDF
286.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1647081
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact