Let f is an element of Z[X] be a quadratic or cubic polynomial. We prove that there exists an integer G(f) >= 2 such that for every integer k >= G(f) one can find infinitely many integers n >= 0 with the property that none of f(n+1),f(n+2),...,f(n+k) is coprime to all the others. This extends previous results on linear polynomials and, in particular, on consecutive integers.
A coprimality condition on consecutive values of polynomials
SANNA, CARLO;
2017-01-01
Abstract
Let f is an element of Z[X] be a quadratic or cubic polynomial. We prove that there exists an integer G(f) >= 2 such that for every integer k >= G(f) one can find infinitely many integers n >= 0 with the property that none of f(n+1),f(n+2),...,f(n+k) is coprime to all the others. This extends previous results on linear polynomials and, in particular, on consecutive integers.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
SannaSzikszai_Revision20171407.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
286.39 kB
Formato
Adobe PDF
|
286.39 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.