According to the recent trend in data acquisition and processing technology, big data are increasingly available in the form of unbounded streams of elementary data items to be processed in real-time. In this paper we study in detail the paradigm of sliding windows, a well-known technique for approximated queries that update their results continuously as new fresh data arrive from the stream. In this work we focus on the relationship between the various existing sliding window semantics and the way the query processing is performed from the parallelism perspective. From this study two alternative parallel models are identified, each covering semantics with very precise properties. Each model is described in terms of its pros and cons, and parallel implementations in the FastFlow framework are analyzed by discussing the layout of the concurrent data structures used for the efficient windows representation in each model.

Harnessing sliding-window execution semantics for parallel stream processing

Aldinucci, Marco
2018-01-01

Abstract

According to the recent trend in data acquisition and processing technology, big data are increasingly available in the form of unbounded streams of elementary data items to be processed in real-time. In this paper we study in detail the paradigm of sliding windows, a well-known technique for approximated queries that update their results continuously as new fresh data arrive from the stream. In this work we focus on the relationship between the various existing sliding window semantics and the way the query processing is performed from the parallelism perspective. From this study two alternative parallel models are identified, each covering semantics with very precise properties. Each model is described in terms of its pros and cons, and parallel implementations in the FastFlow framework are analyzed by discussing the layout of the concurrent data structures used for the efficient windows representation in each model.
2018
116
74
88
http://www.sciencedirect.com/science/article/pii/S0743731517302976
Data Stream Processing, Internet of Things, Continuous Queries, Sliding Windows, Parallel Computing
Mencagli, Gabriele; Torquati, Massimo; Lucattini, Fabio; Cuomo, Salvatore; Aldinucci, Marco
File in questo prodotto:
File Dimensione Formato  
preprint-jpdc-2017.pdf

Accesso aperto

Descrizione: preprint
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri
2018_JPDC_slidingwindows.pdf

Accesso riservato

Descrizione: editoriale
Tipo di file: PDF EDITORIALE
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1653126
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact