We prove that a finite-dimensional Hopf algebra with the dual Chevalley Property over a field of characteristic zero is quasi-isomorphic to a Radford-Majid bosonization whenever the third Hochschild cohomology group in the category of Yetter-Drinfeld modules of its diagram with coefficients in the base field vanishes. Moreover we show that this vanishing occurs in meaningful examples where the diagram is a Nichols algebra.

Cohomology and Coquasi-bialgebras in the category of Yetter-Drinfeld modules

Ardizzoni, Alessandro;Menini, Claudia
2017-01-01

Abstract

We prove that a finite-dimensional Hopf algebra with the dual Chevalley Property over a field of characteristic zero is quasi-isomorphic to a Radford-Majid bosonization whenever the third Hochschild cohomology group in the category of Yetter-Drinfeld modules of its diagram with coefficients in the base field vanishes. Moreover we show that this vanishing occurs in meaningful examples where the diagram is a Nichols algebra.
2017
XVII
2
609
653
https://arxiv.org/abs/1509.04844
Hopf Algebras, Coquasi-bialgebras, Bosonizations, Cocycle Deformations, Hochschild Cohomology.
Angiono, Ivan; Ardizzoni, Alessandro; Menini, Claudia
File in questo prodotto:
File Dimensione Formato  
1509.04844.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 393.18 kB
Formato Adobe PDF
393.18 kB Adobe PDF Visualizza/Apri
39-CohomCoquasiYD.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 947.38 kB
Formato Adobe PDF
947.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1653254
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact