We prove that a finite-dimensional Hopf algebra with the dual Chevalley Property over a field of characteristic zero is quasi-isomorphic to a Radford-Majid bosonization whenever the third Hochschild cohomology group in the category of Yetter-Drinfeld modules of its diagram with coefficients in the base field vanishes. Moreover we show that this vanishing occurs in meaningful examples where the diagram is a Nichols algebra.
Cohomology and Coquasi-bialgebras in the category of Yetter-Drinfeld modules
Ardizzoni, Alessandro;Menini, Claudia
2017-01-01
Abstract
We prove that a finite-dimensional Hopf algebra with the dual Chevalley Property over a field of characteristic zero is quasi-isomorphic to a Radford-Majid bosonization whenever the third Hochschild cohomology group in the category of Yetter-Drinfeld modules of its diagram with coefficients in the base field vanishes. Moreover we show that this vanishing occurs in meaningful examples where the diagram is a Nichols algebra.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1509.04844.pdf
Accesso aperto
Descrizione: Articolo principale
Tipo di file:
PREPRINT (PRIMA BOZZA)
Dimensione
393.18 kB
Formato
Adobe PDF
|
393.18 kB | Adobe PDF | Visualizza/Apri |
39-CohomCoquasiYD.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
947.38 kB
Formato
Adobe PDF
|
947.38 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.