We present VINTE, a theorem prover for conditional logics for counterfactual reasoning introduced by Lewis in the seventies. VINTE implements some internal calculi recently introduced for the basic system and some of its significant extensions with axioms ℕ , , ℂ , and . VINTE is inspired by the methodology of lean and it is implemented in Prolog. The paper shows some experimental results, witnessing that the performances of VINTE are promising.

VINTE: An implementation of internal calculi for lewis'€™ logics of counterfactual reasoning

Pozzato, Gian Luca;
2017-01-01

Abstract

We present VINTE, a theorem prover for conditional logics for counterfactual reasoning introduced by Lewis in the seventies. VINTE implements some internal calculi recently introduced for the basic system and some of its significant extensions with axioms ℕ , , ℂ , and . VINTE is inspired by the methodology of lean and it is implemented in Prolog. The paper shows some experimental results, witnessing that the performances of VINTE are promising.
2017
Inglese
contributo
1 - Conferenza
26th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX 2017
Brasilia (Brazil)
25 September 2017 through 28 September 2017
Internazionale
Nalon C.,Schmidt R.A.
Nalon C.,Schmidt R.A.
Proceedings of the 26th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX 2017
Esperti anonimi
Springer, Cham
Brasilia
BRASILE
10501
149
159
11
9783319669014
https://link.springer.com/chapter/10.1007/978-3-319-66902-1_9
Conditional logics, Lewis logics, sequent calculi, automated reasoning, proof theory, theorem proving
FRANCIA
AUSTRIA
3 – prodotto con deroga per i casi previsti dal Regolamento (allegherò il modulo al passo 5-Carica)
5
info:eu-repo/semantics/conferenceObject
04-CONTRIBUTO IN ATTI DI CONVEGNO::04A-Conference paper in volume
Girlando, Marianna; Lellmann, Bjoern; Olivetti, Nicola; Pozzato, Gian Luca; Vitalis, Quentin
273
reserved
File in questo prodotto:
File Dimensione Formato  
TABLEAUX2017b.pdf

Accesso riservato

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 8.29 MB
Formato Adobe PDF
8.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1655260
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact