This paper presents a system for tracking and analyzing the evolution and transformation of topics in an information network. The system consists of four main modules for pre-processing, adaptive topic modeling, network creation and temporal network analysis. The core module is built upon an adaptive topic modeling algorithm adopting a sliding time window technique that enables the discovery of groundbreaking ideas as those topics that evolve rapidly in the network.

TrAnET: Tracking and Analyzing the Evolution of Topics in Information Networks

Bioglio, Livio
Co-first
;
Pensa, Ruggero G.
Last
;
Rho, Valentina
Co-first
2017-01-01

Abstract

This paper presents a system for tracking and analyzing the evolution and transformation of topics in an information network. The system consists of four main modules for pre-processing, adaptive topic modeling, network creation and temporal network analysis. The core module is built upon an adaptive topic modeling algorithm adopting a sliding time window technique that enables the discovery of groundbreaking ideas as those topics that evolve rapidly in the network.
2017
Inglese
contributo
1 - Conferenza
2017 Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2017)
Skopje, Macedonia
18-22 September 2017
Internazionale
Yasemin Altun, Kamalika Das, Taneli Mielikäinen, Donato Malerba, Jerzy Stefanowski, Jesse Read, Marinka Žitnik, Michelangelo Ceci, Sašo Džeroski
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part III
Comitato scientifico
Springer International Publishing AG
Cham (ZG)
SVIZZERA
10536
432
436
5
978-3-319-71272-7
978-3-319-71273-4
https://link.springer.com/chapter/10.1007/978-3-319-71273-4_46
Information diffusion, Topic modeling, Citation networks
no
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
3
info:eu-repo/semantics/conferenceObject
04-CONTRIBUTO IN ATTI DI CONVEGNO::04A-Conference paper in volume
Bioglio, Livio; Pensa, Ruggero G.; Rho, Valentina
273
reserved
File in questo prodotto:
File Dimensione Formato  
pkdd2017_printed.pdf

Accesso riservato

Descrizione: pdf editoriale
Tipo di file: PDF EDITORIALE
Dimensione 567.04 kB
Formato Adobe PDF
567.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1655321
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact