This paper presents a proof of an uncertainty principle of Donoho-Stark type involving $arepsilon$-concentration of localization operators. More general operators associated with time-frequency representations in the Cohen class are then considered. For these operators, which include all usual quantizations, we prove a boundedness result in the $L^p$ functional setting and a form of uncertainty principle analogous to that for localization operators.
Cohen class of time-frequency representations and operators: boundedness and uncertainty principles
Paolo Boggiatto;Evanthia Carypis;Alessandro Oliaro
2018-01-01
Abstract
This paper presents a proof of an uncertainty principle of Donoho-Stark type involving $arepsilon$-concentration of localization operators. More general operators associated with time-frequency representations in the Cohen class are then considered. For these operators, which include all usual quantizations, we prove a boundedness result in the $L^p$ functional setting and a form of uncertainty principle analogous to that for localization operators.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Boggiatto Carypis Oliaro JMAA2018.pdf
Accesso aperto
Descrizione: Articolo
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
349.07 kB
Formato
Adobe PDF
|
349.07 kB | Adobe PDF | Visualizza/Apri |
Cohen class tf rep.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
398.13 kB
Formato
Adobe PDF
|
398.13 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.