We construct a sequence of compact, oriented, embedded, two-dimensional surfaces of genus one into Euclidean 3-space with prescribed, almost constant, mean curvature of the form H(X) = 1+A|X|−γ for |X| large, when A < 0 and γ ∈ (0,2). Such surfaces are close to sections of unduloids with small neck-size, folded along circumferences centered at the origin and with larger and larger radii. The construction involves a deep study of the corresponding Jacobi operators, an application of the Lyapunov-Schmidt reduction method and some variational argument.
Embedded tori with prescribed mean curvature
Paolo Caldiroli;MUSSO, MONICA
2018-01-01
Abstract
We construct a sequence of compact, oriented, embedded, two-dimensional surfaces of genus one into Euclidean 3-space with prescribed, almost constant, mean curvature of the form H(X) = 1+A|X|−γ for |X| large, when A < 0 and γ ∈ (0,2). Such surfaces are close to sections of unduloids with small neck-size, folded along circumferences centered at the origin and with larger and larger radii. The construction involves a deep study of the corresponding Jacobi operators, an application of the Lyapunov-Schmidt reduction method and some variational argument.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
embedded-tori-2018-10-02.pdf
Accesso aperto
Descrizione: postprint
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Visualizza/Apri |
Caldiroli2018Embedded.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
711.84 kB
Formato
Adobe PDF
|
711.84 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.