We study continuity properties on modulation spaces for τ-pseudodifferential operators with symbols a in Wiener amalgam spaces. We obtain boundedness results for τ∈(0,1) whereas, in the end-points τ=0 and τ=1, the corresponding operators are in general unbounded. Furthermore, for τ∈(0,1), we exhibit a function of τ which is an upper bound for the operator norm. The continuity properties of τ-pseudodifferential operators, for any τ∈[0,1], with symbols a in modulation spaces are well known. Here we find an upper bound for the operator norm which does not depend on the parameter τ∈[0,1], as expected. Key ingredients are uniform continuity estimates for τ-Wigner distributions.

Norm estimates for τ-pseudodifferential operators in Wiener amalgam and modulation spaces

Cordero, Elena;D'Elia, Lorenza;Trapasso S. Ivan
2019-01-01

Abstract

We study continuity properties on modulation spaces for τ-pseudodifferential operators with symbols a in Wiener amalgam spaces. We obtain boundedness results for τ∈(0,1) whereas, in the end-points τ=0 and τ=1, the corresponding operators are in general unbounded. Furthermore, for τ∈(0,1), we exhibit a function of τ which is an upper bound for the operator norm. The continuity properties of τ-pseudodifferential operators, for any τ∈[0,1], with symbols a in modulation spaces are well known. Here we find an upper bound for the operator norm which does not depend on the parameter τ∈[0,1], as expected. Key ingredients are uniform continuity estimates for τ-Wigner distributions.
2019
471
1-2
541
563
https://arxiv.org/abs/1803.07865
Modulation spaces; Wiener amalgam spaces; τ-Pseudodifferential operators; τ-Wigner distribution; Analysis; Applied Mathematics
Cordero, Elena*; D'Elia, Lorenza; Trapasso S. Ivan
File in questo prodotto:
File Dimensione Formato  
CNT rev accepted.pdf

Accesso riservato

Descrizione: Post-Print
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 217.01 kB
Formato Adobe PDF
217.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1681148
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact