We introduce a class of multivariate factor-based processes with the dependence structure of Lévy ρα-models and Sato marginal distributions. We focus on variance gamma and normal inverse Gaussian marginal specifications for their analytical tractability and fit properties. We explore if Sato models, whose margins incorporate more realistic moments term structures, preserve the correlation flexibility in fitting option data. Since ρα-models incorporate nonlinear dependence, we also investigate the impact of Sato margins on nonlinear dependence and its evolution over time. Further, the relevance of nonlinear dependence in multivariate derivative pricing is examined.

Multivariate factor-based processes with Sato margins

Marena, Marina;
2018-01-01

Abstract

We introduce a class of multivariate factor-based processes with the dependence structure of Lévy ρα-models and Sato marginal distributions. We focus on variance gamma and normal inverse Gaussian marginal specifications for their analytical tractability and fit properties. We explore if Sato models, whose margins incorporate more realistic moments term structures, preserve the correlation flexibility in fitting option data. Since ρα-models incorporate nonlinear dependence, we also investigate the impact of Sato margins on nonlinear dependence and its evolution over time. Further, the relevance of nonlinear dependence in multivariate derivative pricing is examined.
2018
21
1
1850005-1
1850005-30
www.worldscinet.com/ijtaf/ijtaf.shtml
Multivariate asset models, Lévy processes, Sato processes, nonlinear dependence
Marena, Marina; Romeo, Andrea; Semeraro, Patrizia
File in questo prodotto:
File Dimensione Formato  
Multivariate Factor-based processes with Sato Margins.pdf

Accesso aperto

Descrizione: Multivariate Factor-based processes with Sato Margins
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF Visualizza/Apri
Marena_IntJTheorApplFin18.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 763.67 kB
Formato Adobe PDF
763.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1691488
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact