We study blow-ups around fixed points at Type I singularities of the Ricci flow on closed manifolds using Perelman's W-functional. First, we give an alternative proof of the result obtained by Naber and Enders-Müller-Topping that blow-up limits are non-flat gradient shrinking Ricci solitons. Our second and main result relates a limit W-density at a Type I singular point to the entropy of the limit gradient shrinking soliton obtained by blowing-up at this point. In particular, we show that no entropy is lost at infinity during the blow-up process.
Perelman's entropy functional at Type i singularities of the Ricci flow
Müller, Reto
2015-01-01
Abstract
We study blow-ups around fixed points at Type I singularities of the Ricci flow on closed manifolds using Perelman's W-functional. First, we give an alternative proof of the result obtained by Naber and Enders-Müller-Topping that blow-up limits are non-flat gradient shrinking Ricci solitons. Our second and main result relates a limit W-density at a Type I singular point to the entropy of the limit gradient shrinking soliton obtained by blowing-up at this point. In particular, we show that no entropy is lost at infinity during the blow-up process.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Crelle final 2015.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
397.65 kB
Formato
Adobe PDF
|
397.65 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.