We derive new results on the characterization of Gelfand--Shilov spaces $mathcal{S}^mu_ u (R^n)$, $mu, u >0$, $mu+ u geq 1$ by Gevrey estimates of the $L^2$ norms of iterates of $(m,k)$ anisotropic globally elliptic Shubin (or $Gamma$) type operators, $(-Delta)^{m/2} +| x |^k$ with $m,kin 2N$ being a model operator, and on the decay of the Fourier coefficients in the related eigenfunction expansions. Similar results are obtained for the spaces $Sigma^mu_ u (R^n)$, $mu, u >0$, $mu+ u > 1$, cf. eqref{GSdef}. In contrast to the symmetric case $mu = u$ and $k=m$ (classical Shubin operators) we encounter resonance type phenomena involving the ratio $kappa:=mu/ u$; namely we obtain a characterization of $mathcal{S}^mu_ u(R^n)$ and $Sigma^mu_ u(R^n)$ in the case $mu=kt/(k+m), u= mt/(k+m), t geq 1$, that is, when $kappa=k/m in Q$.

Anisotropic Shubin operators and eigenfunction expansions in Gelfand-Shilov spaces

Cappiello M.;Rodino L.
2019

Abstract

We derive new results on the characterization of Gelfand--Shilov spaces $mathcal{S}^mu_ u (R^n)$, $mu, u >0$, $mu+ u geq 1$ by Gevrey estimates of the $L^2$ norms of iterates of $(m,k)$ anisotropic globally elliptic Shubin (or $Gamma$) type operators, $(-Delta)^{m/2} +| x |^k$ with $m,kin 2N$ being a model operator, and on the decay of the Fourier coefficients in the related eigenfunction expansions. Similar results are obtained for the spaces $Sigma^mu_ u (R^n)$, $mu, u >0$, $mu+ u > 1$, cf. eqref{GSdef}. In contrast to the symmetric case $mu = u$ and $k=m$ (classical Shubin operators) we encounter resonance type phenomena involving the ratio $kappa:=mu/ u$; namely we obtain a characterization of $mathcal{S}^mu_ u(R^n)$ and $Sigma^mu_ u(R^n)$ in the case $mu=kt/(k+m), u= mt/(k+m), t geq 1$, that is, when $kappa=k/m in Q$.
138
2
857
870
anisotropic Shubin-type operators, Gelfand-Shilov spaces, eigenfunction expansions
Cappiello M.; Gramchev T.; Pilipovic S.; Rodino L.
File in questo prodotto:
File Dimensione Formato  
articolopubblicato.pdf

Accesso riservato

Descrizione: articolo pubblicato
Tipo di file: PDF EDITORIALE
Dimensione 222.45 kB
Formato Adobe PDF
222.45 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
CaGrPiRofinal.pdf

Accesso aperto

Descrizione: postprint
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 484.4 kB
Formato Adobe PDF
484.4 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1710764
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact