Doxorubicin (dox) is one of the first-line drug in osteosarcoma treatment but its effectiveness is limited by the efflux pump P-glycoprotein (Pgp) and by the onset of cardiotoxicity. We previously demonstrated that synthetic doxs conjugated with a H2S-releasing moiety (Sdox) were less cardiotoxic and more effective than dox against Pgp-overexpressing osteosarcoma cells. In order to increase the active delivery to tumor cells, we produced hyaluronic acid (HA)-conjugated liposomes containing Sdox (HA-Lsdox), exploiting the abundance of the HA receptor CD44 in osteosarcoma. HA-Lsdox showed favorable drug-release profile and higher toxicity in vitro and in vivo than dox or the FDA-approved liposomal dox Caelyx® against Pgp-overexpressing osteosarcoma, displaying the same cardiotoxicity profile of Caelyx®. Differently from dox, HA-Lsdox delivered the drug within the endoplasmic reticulum (ER), inducing protein sulfhydration and ubiquitination, and activating a ER stress pro-apoptotic response mediated by CHOP. HA-Lsdox also sulfhydrated the nascent Pgp in the ER, reducing its activity. We propose HA-Lsdox as an innovative tool noteworthy to be tested in Pgp-overexpressing patients, who are frequently less responsive to standard treatments in which dox is one of the most important drugs.
Hyaluronated liposomes containing H2S-releasing doxorubicin are effective against P-glycoprotein-positive/doxorubicin-resistant osteosarcoma cells and xenografts
Gazzano E.;Buondonno I.;Marengo A.;Rolando B.;Chegaev K.;Kopecka J.;SAPONARA, SIMONA;Sorge M.;Gasco A.;Fruttero R.;Brancaccio M.;Stella B.;Fattal E.;Arpicco S.
Co-last
;Riganti C.
Co-last
2019-01-01
Abstract
Doxorubicin (dox) is one of the first-line drug in osteosarcoma treatment but its effectiveness is limited by the efflux pump P-glycoprotein (Pgp) and by the onset of cardiotoxicity. We previously demonstrated that synthetic doxs conjugated with a H2S-releasing moiety (Sdox) were less cardiotoxic and more effective than dox against Pgp-overexpressing osteosarcoma cells. In order to increase the active delivery to tumor cells, we produced hyaluronic acid (HA)-conjugated liposomes containing Sdox (HA-Lsdox), exploiting the abundance of the HA receptor CD44 in osteosarcoma. HA-Lsdox showed favorable drug-release profile and higher toxicity in vitro and in vivo than dox or the FDA-approved liposomal dox Caelyx® against Pgp-overexpressing osteosarcoma, displaying the same cardiotoxicity profile of Caelyx®. Differently from dox, HA-Lsdox delivered the drug within the endoplasmic reticulum (ER), inducing protein sulfhydration and ubiquitination, and activating a ER stress pro-apoptotic response mediated by CHOP. HA-Lsdox also sulfhydrated the nascent Pgp in the ER, reducing its activity. We propose HA-Lsdox as an innovative tool noteworthy to be tested in Pgp-overexpressing patients, who are frequently less responsive to standard treatments in which dox is one of the most important drugs.File | Dimensione | Formato | |
---|---|---|---|
Gazzano, Cancer lett MS and SI 2019.pdf
Accesso riservato
Descrizione: Gazzano, Cancer Lett 2019
Tipo di file:
PDF EDITORIALE
Dimensione
4.32 MB
Formato
Adobe PDF
|
4.32 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Gazzano_Cancer Letter submitted.pdf
Accesso aperto
Descrizione: Gazzano, preprint open access 2019 Cancer lett
Tipo di file:
PREPRINT (PRIMA BOZZA)
Dimensione
765.26 kB
Formato
Adobe PDF
|
765.26 kB | Adobe PDF | Visualizza/Apri |
Hyaluronated liposomes containing H2S-releasing doxorubicin are effectiveagainst P-glycoprotein-positive.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
2.36 MB
Formato
Adobe PDF
|
2.36 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.