We analyze existence, multiplicity and oscillatory behavior of positive radial solutions to a class of quasilinear equations governed by the Lorentz- Minkowski mean curvature operator. The equation is set in a ball or an annulus of RN, is subject to homogeneous Neumann boundary conditions, and involves a nonlinear term on which we do not impose any growth condition at infinity. The main tool that we use is the shooting method for ODEs.

Positive radial solutions for the Minkowski-curvature equation with Neumann boundary conditions

Alberto Boscaggin;Francesca Colasuonno;Benedetta Noris
2020-01-01

Abstract

We analyze existence, multiplicity and oscillatory behavior of positive radial solutions to a class of quasilinear equations governed by the Lorentz- Minkowski mean curvature operator. The equation is set in a ball or an annulus of RN, is subject to homogeneous Neumann boundary conditions, and involves a nonlinear term on which we do not impose any growth condition at infinity. The main tool that we use is the shooting method for ODEs.
2020
13
1921
1933
https://arxiv.org/abs/1806.06048
Lorentz-Minkowski mean curvature operator, Shooting method, Existence and multiplicity, Oscillating solutions, Neumann boundary conditions.
Alberto Boscaggin; Francesca Colasuonno; Benedetta Noris
File in questo prodotto:
File Dimensione Formato  
ABF3-18-06-05.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 529.23 kB
Formato Adobe PDF
529.23 kB Adobe PDF Visualizza/Apri
20BosColNorDCDS.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 490.54 kB
Formato Adobe PDF
490.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1713461
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 10
social impact