Single-cell sequencing experiments are a new mainstay in biology and have been advancing science especially in the biomedical field. The high pressure to integrate the technology into daily laboratory live requires solid knowledge with respect to potential limitations and precautions to be taken care of before applying it to complex research questions. In the past, we have identified two issues with quality measures neglected by the growing community involving SmartSeq and droplet or micro-well-based scRNASeq methods (1) how to ensure that only single cells are introduced without biasing on light scattering when handling complex cell mixtures and organ preparations or (2) how best to control for (pro-)apoptotic cell contaminations in single-cell sequencing approaches. Sighting of concurrent literature involving single-cell sequencing technologies revealed that these topics are generally neglected or simply approached in silico but not at the bench before generating single-cell data sets. We fear that those important quality aspects are overlooked due to reduced awareness of their importance for guaranteeing the quality of experiments. In this Cytometry rigor issue, we provide experimentally supported guidance on how to circumvent those critical shortcomings in order to promote a better use of the fantastic single-cell sequencing toolbox in biology. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.

Apoptotic Cell Exclusion and Bias-Free Single-Cell Selection Are Important Quality Control Requirements for Successful Single-Cell Sequencing Applications

ALESSANDRÌ, LUCA;Calogero, Raffaele;
2019-01-01

Abstract

Single-cell sequencing experiments are a new mainstay in biology and have been advancing science especially in the biomedical field. The high pressure to integrate the technology into daily laboratory live requires solid knowledge with respect to potential limitations and precautions to be taken care of before applying it to complex research questions. In the past, we have identified two issues with quality measures neglected by the growing community involving SmartSeq and droplet or micro-well-based scRNASeq methods (1) how to ensure that only single cells are introduced without biasing on light scattering when handling complex cell mixtures and organ preparations or (2) how best to control for (pro-)apoptotic cell contaminations in single-cell sequencing approaches. Sighting of concurrent literature involving single-cell sequencing technologies revealed that these topics are generally neglected or simply approached in silico but not at the bench before generating single-cell data sets. We fear that those important quality aspects are overlooked due to reduced awareness of their importance for guaranteeing the quality of experiments. In this Cytometry rigor issue, we provide experimentally supported guidance on how to circumvent those critical shortcomings in order to promote a better use of the fantastic single-cell sequencing toolbox in biology. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
2019
1
13
10×Genomics; SmartSeq2; apoptosis; cell sorting; in silico analysis; quality controls; single-cell Sequencing
Ordoñez-Rueda, Diana; Baying, Bianka; Pavlinic, Dinko; Alessandri, Luca; Yeboah, Yvonne; Landry, Jonathan J M; Calogero, Raffaele; Benes, Vladimir; Pa...espandi
File in questo prodotto:
File Dimensione Formato  
Ordonez-Rueda.et.al.2019.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 7.14 MB
Formato Adobe PDF
7.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1713968
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact