In this paper, we construct a new trivariate spline quasi-interpolation operator. It is expressed as blending sum of univariate and bivariate quadratic spline quasi-interpolants and it is of near-best type, i.e. it has a small infinity norm and the coefficients functionals defining it are determined by minimizing an upper bound of the operator infinity norm, derived from the Bernstein-Bézier coefficients of its Lebesgue function.

A trivariate near-best blending quadratic quasi-interpolant

Dagnino C.;Remogna S.
2020-01-01

Abstract

In this paper, we construct a new trivariate spline quasi-interpolation operator. It is expressed as blending sum of univariate and bivariate quadratic spline quasi-interpolants and it is of near-best type, i.e. it has a small infinity norm and the coefficients functionals defining it are determined by minimizing an upper bound of the operator infinity norm, derived from the Bernstein-Bézier coefficients of its Lebesgue function.
2020
176
25
35
B-spline; Blending operator; Box spline; Quasi-interpolation
Barrera D.; Dagnino C.; Ibanez M.J.; Remogna S.
File in questo prodotto:
File Dimensione Formato  
quadraticNB_matcom_2_v4.pdf

Open Access dal 14/10/2021

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 173.5 kB
Formato Adobe PDF
173.5 kB Adobe PDF Visualizza/Apri
1-s2.0-S0378475419303064-main.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 534.58 kB
Formato Adobe PDF
534.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1719745
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact