The Wigner distribution is a milestone of Time-frequency Analysis. In order to cope with its drawbacks while preserving the desirable features that made it so popular, several kind of modifications have been proposed. This contributions fits into this perspective. We introduce a family of phase-space representations of Wigner type associated with invertible matrices and explore their general properties. As main result, we provide a characterization for the Cohen’s class. This feature suggests to interpret this family of representations as linear perturbations of the Wigner distribution. We show which of its properties survive under linear perturbations and which ones are truly distinctive of its central role.
Linear perturbations of the Wigner distribution and the Cohen class
Cordero E.;Ivan Trapasso S.
2020-01-01
Abstract
The Wigner distribution is a milestone of Time-frequency Analysis. In order to cope with its drawbacks while preserving the desirable features that made it so popular, several kind of modifications have been proposed. This contributions fits into this perspective. We introduce a family of phase-space representations of Wigner type associated with invertible matrices and explore their general properties. As main result, we provide a characterization for the Cohen’s class. This feature suggests to interpret this family of representations as linear perturbations of the Wigner distribution. We show which of its properties survive under linear perturbations and which ones are truly distinctive of its central role.File | Dimensione | Formato | |
---|---|---|---|
1811.07795.pdf
Accesso riservato
Tipo di file:
PREPRINT (PRIMA BOZZA)
Dimensione
552.38 kB
Formato
Adobe PDF
|
552.38 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.