The TT ¯ deformation of 2-dimensional QFTs is closely-related to Jackiw- Teitelboim gravity. It has been shown that, at the classical level, this perturbation induces an interaction between the stress-energy tensor and space-time and the equations of motion of the deformed theory map onto the original ones through a field-dependent coordinate transformation. At the quantum level, instead, the perturbation is induced by a modification of the original S-matrix by a specific CDD factor and, correspondingly, the quantised energy levels evolve according to a Burgers-type equation. In this paper, we point out that, in the framework of integrable field theories, there exist infinite families of perturbations characterised by a coupling between space-time and local conserved currents, labelled by the Lorentz spin. Similarly to the TT ¯ case, the deformed models emerge through a field-dependent coordinate transformation involving conserved currents with higher Lorentz spin. Furthermore, using a geometric construction, we present a general method to derive the integrable hierarchy of the corresponding deformed models. The resulting expressions of the conserved currents turn out to be essential for the identification of the scattering phase factors which generate the deformations of the S-matrix, at the quantum level. Finally, the effect of the perturbations on the finite-volume spectrum is investigated using a non-linear integral equation. Exact spectral flow equations are derived, and links with previous literature, in particular on the JT ¯ model, are discussed. While the classical setup is very general, the sine-Gordon model and its CFT limit are used as illustrative quantum examples. Most of the final equations and considerations are, however, of broader validity, or easily generalisable to more complicated systems.

Conserved currents and T T ¯s irrelevant deformations of 2D integrable field theories

Conti R.;Tateo R.
2019-01-01

Abstract

The TT ¯ deformation of 2-dimensional QFTs is closely-related to Jackiw- Teitelboim gravity. It has been shown that, at the classical level, this perturbation induces an interaction between the stress-energy tensor and space-time and the equations of motion of the deformed theory map onto the original ones through a field-dependent coordinate transformation. At the quantum level, instead, the perturbation is induced by a modification of the original S-matrix by a specific CDD factor and, correspondingly, the quantised energy levels evolve according to a Burgers-type equation. In this paper, we point out that, in the framework of integrable field theories, there exist infinite families of perturbations characterised by a coupling between space-time and local conserved currents, labelled by the Lorentz spin. Similarly to the TT ¯ case, the deformed models emerge through a field-dependent coordinate transformation involving conserved currents with higher Lorentz spin. Furthermore, using a geometric construction, we present a general method to derive the integrable hierarchy of the corresponding deformed models. The resulting expressions of the conserved currents turn out to be essential for the identification of the scattering phase factors which generate the deformations of the S-matrix, at the quantum level. Finally, the effect of the perturbations on the finite-volume spectrum is investigated using a non-linear integral equation. Exact spectral flow equations are derived, and links with previous literature, in particular on the JT ¯ model, are discussed. While the classical setup is very general, the sine-Gordon model and its CFT limit are used as illustrative quantum examples. Most of the final equations and considerations are, however, of broader validity, or easily generalisable to more complicated systems.
2019
11
120
1
50
http://link.springer.com/journal/13130
Bethe Ansatz; Integrable Field Theories
Conti R.; Negro S.; Tateo R.
File in questo prodotto:
File Dimensione Formato  
Conti2019_Article_ConservedCurrentsAndTTOverline.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 992.05 kB
Formato Adobe PDF
992.05 kB Adobe PDF Visualizza/Apri
Conserved.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 992.05 kB
Formato Adobe PDF
992.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1720960
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 48
social impact