European populations display low genetic differentiation as the result of long-term blending of their ancient founding ancestries. However, it is unclear how the combination of ancient ancestries related to early foragers, Neolithic farmers, and Bronze Age nomadic pastoralists can explain the distribution of genetic variation across Europe. Populations in natural crossroads like the Italian peninsula are expected to recapitulate the continental diversity, but have been systematically understudied. Here, we characterize the ancestry profiles of Italian populations using a genome-wide dataset representative of modern and ancient samples from across Italy, Europe, and the rest of the world. Italian genomes capture several ancient signatures, including a non–steppe contribution derived ultimately from the Caucasus. Differences in ancestry composition, as the result of migration and admixture, have generated in Italy the largest degree of population structure detected so far in the continent, as well as shaping the amount of Neanderthal DNA in modern-day populations.

Population structure of modern-day Italians reveals patterns of ancient and archaic ancestries in Southern Europe

Aneli S.
Co-first
;
Birolo G.;Di Gaetano C.;Piazza A.;Matullo G.
Co-last
;
2019-01-01

Abstract

European populations display low genetic differentiation as the result of long-term blending of their ancient founding ancestries. However, it is unclear how the combination of ancient ancestries related to early foragers, Neolithic farmers, and Bronze Age nomadic pastoralists can explain the distribution of genetic variation across Europe. Populations in natural crossroads like the Italian peninsula are expected to recapitulate the continental diversity, but have been systematically understudied. Here, we characterize the ancestry profiles of Italian populations using a genome-wide dataset representative of modern and ancient samples from across Italy, Europe, and the rest of the world. Italian genomes capture several ancient signatures, including a non–steppe contribution derived ultimately from the Caucasus. Differences in ancestry composition, as the result of migration and admixture, have generated in Italy the largest degree of population structure detected so far in the continent, as well as shaping the amount of Neanderthal DNA in modern-day populations.
2019
Inglese
Esperti anonimi
5
9
1
1
12
https://advances.sciencemag.org/content/5/9/eaaw3492/tab-pdf
FRANCIA
REGNO UNITO DI GRAN BRETAGNA
STATI UNITI D'AMERICA
BELGIO
DANIMARCA
ESTONIA
MAROCCO
PORTOGALLO
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
262
48
Raveane A.; Aneli S.; Montinaro F.; Athanasiadis G.; Barlera S.; Birolo G.; Boncoraglio G.; Di Blasio A.M.; Di Gaetano C.; Pagani L.; Parolo S.; Pasch...espandi
info:eu-repo/semantics/article
open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
eaaw3492.full.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 2.74 MB
Formato Adobe PDF
2.74 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1723019
Citazioni
  • ???jsp.display-item.citation.pmc??? 30
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 42
social impact