In order to approximate functions defined on the real semiaxis, which can grow exponentially both at $0$ and at $+infty$, we introduce a suitable Lagrange operator based on the zeros of orthogonal polynomials with respect to the weight $w(x)=x^gamma mathrm{e}^{-x^{-alpha}-x^eta}$. We prove that this interpolation process has Lebesgue constant with order $log(m)$ in weighted uniform metric and converges with the order of the best approximation in a large subset of weighted $L^p-$spaces, $p in (1,infty)$
Lagrange interpolation at Pollaczek--Laguerre zeros on the real semiaxis
Notarangelo I.
2019-01-01
Abstract
In order to approximate functions defined on the real semiaxis, which can grow exponentially both at $0$ and at $+infty$, we introduce a suitable Lagrange operator based on the zeros of orthogonal polynomials with respect to the weight $w(x)=x^gamma mathrm{e}^{-x^{-alpha}-x^eta}$. We prove that this interpolation process has Lebesgue constant with order $log(m)$ in weighted uniform metric and converges with the order of the best approximation in a large subset of weighted $L^p-$spaces, $p in (1,infty)$File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
MN-JAT-2019.pdf
Accesso riservato
Descrizione: articolo principale
Tipo di file:
PDF EDITORIALE
Dimensione
291.21 kB
Formato
Adobe PDF
|
291.21 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
MN-JAT-2019-uniTO.pdf
Open Access dal 22/04/2021
Descrizione: post print
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
452.85 kB
Formato
Adobe PDF
|
452.85 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.