This paper summarizes recent results on weighted polynomial approximations for functions defined on the real semiaxis. The function may grow exponentially both at 0 and at +∞. We discuss orthogonal polynomials, polynomial inequalities, function spaces with new moduli of smoothness, estimates for the best approximation, Gaussian rules, and Lagrange interpolation with respect to the weight w(x)=x^γ e^(−x^(−α)−x^β) (α>0, β>1, γ≥0).

Polynomial approximation with Pollaczeck--Laguerre weights on the real semiaxis. A survey

Notarangelo, Incoronata
2018-01-01

Abstract

This paper summarizes recent results on weighted polynomial approximations for functions defined on the real semiaxis. The function may grow exponentially both at 0 and at +∞. We discuss orthogonal polynomials, polynomial inequalities, function spaces with new moduli of smoothness, estimates for the best approximation, Gaussian rules, and Lagrange interpolation with respect to the weight w(x)=x^γ e^(−x^(−α)−x^β) (α>0, β>1, γ≥0).
2018
50
36
51
http://etna.mcs.kent.edu/volumes/2011-2020/vol50/
http://etna.mcs.kent.edu/
orthogonal polynomials; weighted polynomial approximation; polynomial inequalities; Gaussian quadrature rules; Lagrange interpolation; Pollaczeck-Laguerre exponential weights
Mastroianni, Giuseppe; Milovanović, Gradimir V.; Notarangelo, Incoronata
File in questo prodotto:
File Dimensione Formato  
MMN-ETNA-2018.pdf

Accesso riservato

Descrizione: articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 355.5 kB
Formato Adobe PDF
355.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
MMN-ETNA-2018-uniTO.pdf

Accesso aperto

Descrizione: post print
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 450.15 kB
Formato Adobe PDF
450.15 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1724936
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact