This paper summarizes recent results on weighted polynomial approximations for functions defined on the real semiaxis. The function may grow exponentially both at 0 and at +∞. We discuss orthogonal polynomials, polynomial inequalities, function spaces with new moduli of smoothness, estimates for the best approximation, Gaussian rules, and Lagrange interpolation with respect to the weight w(x)=x^γ e^(−x^(−α)−x^β) (α>0, β>1, γ≥0).
Polynomial approximation with Pollaczeck--Laguerre weights on the real semiaxis. A survey
Notarangelo, Incoronata
2018-01-01
Abstract
This paper summarizes recent results on weighted polynomial approximations for functions defined on the real semiaxis. The function may grow exponentially both at 0 and at +∞. We discuss orthogonal polynomials, polynomial inequalities, function spaces with new moduli of smoothness, estimates for the best approximation, Gaussian rules, and Lagrange interpolation with respect to the weight w(x)=x^γ e^(−x^(−α)−x^β) (α>0, β>1, γ≥0).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
MMN-ETNA-2018.pdf
Accesso riservato
Descrizione: articolo principale
Tipo di file:
PDF EDITORIALE
Dimensione
355.5 kB
Formato
Adobe PDF
|
355.5 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
MMN-ETNA-2018-uniTO.pdf
Accesso aperto
Descrizione: post print
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
450.15 kB
Formato
Adobe PDF
|
450.15 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.