On our route towards a more sustainable future, the use of stranded and underutilized natural gas to produce chemicals would be a great aid in mitigating climate change, due to the reduced CO2 emissions in comparison to using petroleum. In this study, we investigate the performance of Cu-exchanged SSZ-13 and SAPO-34 microporous materials in the stepwise, direct conversion of methane to methanol. With the use of X-ray absorption spectroscopy, infrared (in combination with CO adsorption) and Raman spectroscopy, we compared the structure–activity relationships for the two materials. We found that SSZ-13 performed significantly better than SAPO-34 at the standard conditions. From CH4-TPR, it is evident that SAPO-34 requires a higher temperature for CH4 oxidation, and by changing the CH4 loading temperature from 200 to 300 °C, the yield (μmol/g) of SAPO-34 was increased tenfold. As observed from spectroscopy, both three- and four-fold coordinated Cu-species were formed after O2-activation; among them, the active species for methane activation. The Cu speciation in SAPO-34 is distinct from that in SSZ-13. These deviations can be attributed to several factors, including the different framework polarities, and the amount and distribution of ion exchange sites.
Comparing the Nature of Active Sites in Cu-loaded SAPO-34 and SSZ-13 for the Direct Conversion of Methane to Methanol
Matteo Signorile;Elisa Borfecchia;Silvia Bordiga;Gloria Berlier;
2020-01-01
Abstract
On our route towards a more sustainable future, the use of stranded and underutilized natural gas to produce chemicals would be a great aid in mitigating climate change, due to the reduced CO2 emissions in comparison to using petroleum. In this study, we investigate the performance of Cu-exchanged SSZ-13 and SAPO-34 microporous materials in the stepwise, direct conversion of methane to methanol. With the use of X-ray absorption spectroscopy, infrared (in combination with CO adsorption) and Raman spectroscopy, we compared the structure–activity relationships for the two materials. We found that SSZ-13 performed significantly better than SAPO-34 at the standard conditions. From CH4-TPR, it is evident that SAPO-34 requires a higher temperature for CH4 oxidation, and by changing the CH4 loading temperature from 200 to 300 °C, the yield (μmol/g) of SAPO-34 was increased tenfold. As observed from spectroscopy, both three- and four-fold coordinated Cu-species were formed after O2-activation; among them, the active species for methane activation. The Cu speciation in SAPO-34 is distinct from that in SSZ-13. These deviations can be attributed to several factors, including the different framework polarities, and the amount and distribution of ion exchange sites.File | Dimensione | Formato | |
---|---|---|---|
catalysts-10-00191.pdf
Accesso aperto
Descrizione: Articolo principale
Tipo di file:
PDF EDITORIALE
Dimensione
1.51 MB
Formato
Adobe PDF
|
1.51 MB | Adobe PDF | Visualizza/Apri |
catalysts-10-00191-s001.pdf
Accesso aperto
Descrizione: Supporting information
Tipo di file:
MATERIALE NON BIBLIOGRAFICO
Dimensione
709.5 kB
Formato
Adobe PDF
|
709.5 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.