Fox rabies has been eliminated from vast areas of West and Central Europe, but cases still occur in the Balkans. Oral vaccination is an effective method for reducing the incidence of the disease in wildlife, but it requires monitoring if bait density is adequate for the density of the wildlife reservoir. We developed a methodology to evaluate the effectiveness of aerial vaccination campaigns conducted in Montenegro during autumn 2011 and spring 2012. The effectiveness of the vaccination campaign was assessed by (i) estimating the density of baits, (ii) estimating the distribution of the red fox, (iii) identifying critical areas of insufficient bait density by combining both variables. Although the two vaccination campaigns resulted in 45% and 47% of the country’s total area not reaching recommended density of 20 baits/km2, the consecutive delivery of both campaigns reduced these “gaps” to 6%. By combining bait and reservoir density data, we were able to show that bait density was lower than fox density in only 5% of Montenegro’s territory. The methodology described can be used for real-time evaluation of aerial vaccine delivery campaigns, to identify areas with insufficient bait densities.

Wildlife and Bait Density Monitoring to Describe the Effectiveness of a Rabies Vaccination Program in Foxes

Tizzani, Paolo;Fanelli, Angela
Co-first
;
Viviani, Paolo;
2020-01-01

Abstract

Fox rabies has been eliminated from vast areas of West and Central Europe, but cases still occur in the Balkans. Oral vaccination is an effective method for reducing the incidence of the disease in wildlife, but it requires monitoring if bait density is adequate for the density of the wildlife reservoir. We developed a methodology to evaluate the effectiveness of aerial vaccination campaigns conducted in Montenegro during autumn 2011 and spring 2012. The effectiveness of the vaccination campaign was assessed by (i) estimating the density of baits, (ii) estimating the distribution of the red fox, (iii) identifying critical areas of insufficient bait density by combining both variables. Although the two vaccination campaigns resulted in 45% and 47% of the country’s total area not reaching recommended density of 20 baits/km2, the consecutive delivery of both campaigns reduced these “gaps” to 6%. By combining bait and reservoir density data, we were able to show that bait density was lower than fox density in only 5% of Montenegro’s territory. The methodology described can be used for real-time evaluation of aerial vaccine delivery campaigns, to identify areas with insufficient bait densities.
2020
5(1)
1
12
Tizzani, Paolo; Fanelli, Angela; Potzsch, Carsten; Henning, Joerg; Šašić, Srdjan; Viviani, Paolo; Hrapović, Mevlida
File in questo prodotto:
File Dimensione Formato  
tropicalmed-05-00032.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1729900
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact