Micro-blogging systems such as Twitter expose digital traces of social discourse with an unprecedented degree of resolution of individual behaviors. They offer an opportunity to investigate how a large-scale social system responds to exogenous or endogenous stimuli, and to disentangle the temporal, spatial and topical aspects of users’ activity. Here we focus on spikes of collective attention in Twitter, and specifically on peaks in the popularity of hashtags. Users employ hashtags as a form of social annotation, to define a shared context for a specific event, topic, or meme. We analyze a large-scale record of Twitter activity and find that the evolution of hashtag popularity over time defines discrete classes of hashtags. We link these dynamical classes to the events the hashtags represent and use text mining techniques to provide a semantic characterization of the hashtag classes. Moreover, we track the propagation of hashtags in the Twitter social network and find that epidemic spreading plays a minor role in hashtag popularity, which is mostly driven by exogenous factors.
Dynamical Classes of Collective Attention in Twitter
CATTUTO C
2012-01-01
Abstract
Micro-blogging systems such as Twitter expose digital traces of social discourse with an unprecedented degree of resolution of individual behaviors. They offer an opportunity to investigate how a large-scale social system responds to exogenous or endogenous stimuli, and to disentangle the temporal, spatial and topical aspects of users’ activity. Here we focus on spikes of collective attention in Twitter, and specifically on peaks in the popularity of hashtags. Users employ hashtags as a form of social annotation, to define a shared context for a specific event, topic, or meme. We analyze a large-scale record of Twitter activity and find that the evolution of hashtag popularity over time defines discrete classes of hashtags. We link these dynamical classes to the events the hashtags represent and use text mining techniques to provide a semantic characterization of the hashtag classes. Moreover, we track the propagation of hashtags in the Twitter social network and find that epidemic spreading plays a minor role in hashtag popularity, which is mostly driven by exogenous factors.File | Dimensione | Formato | |
---|---|---|---|
p251-lehmann.pdf
Accesso riservato
Dimensione
1.44 MB
Formato
Adobe PDF
|
1.44 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1111.1896.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.7 MB
Formato
Adobe PDF
|
1.7 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.