Social bookmarking systems and their emergent information structures, known as folksonomies, are increasingly important data sources for Semantic Web applications. A key question for harvesting semantics from these systems is how to extend and adapt traditional notions of similarity to folksonomies, and which measures are best suited for applications such as navigation support, semantic search, and ontology learning. Here we build an evaluation framework to compare various general folksonomy-based similarity measures derived from established information-theoretic, statistical, and practical measures. Our framework deals generally and symmetrically with users, tags, and resources. For evaluation purposes we focus on similarity among tags and resources, considering different ways to aggregate annotations across users. After comparing how tag similarity measures predict user-created tag relations, we provide an external grounding by user-validated semantic proxies based on WordNet and the Open Directory. We also investigate the issue of scalability. We find that mutual information with distributional micro-aggregation across users yields the highest accuracy, but is not scalable; per-user projection with collaborative aggregation provides the best scalable approach via incremental computations. The results are consistent across resource and tag similarity.

Evaluating Similarity Measures for Emergent Semantics of Social Tagging

CATTUTO C;
2009-01-01

Abstract

Social bookmarking systems and their emergent information structures, known as folksonomies, are increasingly important data sources for Semantic Web applications. A key question for harvesting semantics from these systems is how to extend and adapt traditional notions of similarity to folksonomies, and which measures are best suited for applications such as navigation support, semantic search, and ontology learning. Here we build an evaluation framework to compare various general folksonomy-based similarity measures derived from established information-theoretic, statistical, and practical measures. Our framework deals generally and symmetrically with users, tags, and resources. For evaluation purposes we focus on similarity among tags and resources, considering different ways to aggregate annotations across users. After comparing how tag similarity measures predict user-created tag relations, we provide an external grounding by user-validated semantic proxies based on WordNet and the Open Directory. We also investigate the issue of scalability. We find that mutual information with distributional micro-aggregation across users yields the highest accuracy, but is not scalable; per-user projection with collaborative aggregation provides the best scalable approach via incremental computations. The results are consistent across resource and tag similarity.
2009
WWW '09 The 18th International World Wide Web Conference
Madrid, Spain — April 20 - 24, 2009
April 20 - 24, 2009
Proc. 18th International World Wide Web Conference WWW2009
ACM
641
650
https://dl.acm.org/citation.cfm?id=1526796
B. Markines; CATTUTO C; F. Menczer; D. Benz; A. Hotho; G. Stumme
File in questo prodotto:
File Dimensione Formato  
markines2009evaluating.pdf

Accesso riservato

Dimensione 955.09 kB
Formato Adobe PDF
955.09 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1730835
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 194
  • ???jsp.display-item.citation.isi??? ND
social impact