We prove that a quasi-bialgebra admits a preantipode if and only if the associated free quasi-Hopf bimodule functor is Frobenius, if and only if the related (opmonoidal) monad is a Hopf monad. The same results hold in particular for a bialgebra, tightening the connection between Hopf and Frobenius properties.

Antipodes, Preantipodes and Frobenius Functors

Paolo Saracco
First
2021-01-01

Abstract

We prove that a quasi-bialgebra admits a preantipode if and only if the associated free quasi-Hopf bimodule functor is Frobenius, if and only if the related (opmonoidal) monad is a Hopf monad. The same results hold in particular for a bialgebra, tightening the connection between Hopf and Frobenius properties.
2021
20
7
0
2150124
https://arxiv.org/abs/1906.03435
Frobenius functors, preantipodes, quasi-bialgebras, quasi-Hopf bimodules, Hopf algebras, Hopf modules, monoidal categories, bimonads, Hopf monads.
Paolo Saracco
File in questo prodotto:
File Dimensione Formato  
09 - Saracco - Antipodes Preantipodes and Frobenius Functors-V2.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 405.73 kB
Formato Adobe PDF
405.73 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1734191
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact