We prove that a quasi-bialgebra admits a preantipode if and only if the associated free quasi-Hopf bimodule functor is Frobenius, if and only if the related (opmonoidal) monad is a Hopf monad. The same results hold in particular for a bialgebra, tightening the connection between Hopf and Frobenius properties.
Antipodes, Preantipodes and Frobenius Functors
Paolo Saracco
First
2021-01-01
Abstract
We prove that a quasi-bialgebra admits a preantipode if and only if the associated free quasi-Hopf bimodule functor is Frobenius, if and only if the related (opmonoidal) monad is a Hopf monad. The same results hold in particular for a bialgebra, tightening the connection between Hopf and Frobenius properties.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
09 - Saracco - Antipodes Preantipodes and Frobenius Functors-V2.pdf
Accesso aperto
Descrizione: Articolo principale
Tipo di file:
PREPRINT (PRIMA BOZZA)
Dimensione
405.73 kB
Formato
Adobe PDF
|
405.73 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.