INTRODUCTION: As we enter the era of "big data," an increasing amount of complex health-care data will become available. These data are often redundant, "noisy," and characterized by wide variability. In order to offer a precise and transversal view of a clinical scenario the artificial intelligence (AI) with machine learning (ML) algorithms and Artificial neuron networks (ANNs) process were adopted, with a promising wide diffusion in the near future. The present work aims to provide a comprehensive and critical overview of the current and potential applications of AI and ANNs in urology. EVIDENCE ACQUISITION: A non-systematic review of the literature was performed by screening Medline, PubMed, the Cochrane Database, and Embase to detect pertinent studies regarding the application of AI and ANN in Urology. EVIDENCE SYNTHESIS: The main application of AI in urology is the field of genitourinary cancers. Focusing on prostate cancer, AI was applied for the prediction of prostate biopsy results. For bladder cancer, the prediction of recurrence-free probability and diagnostic evaluation were analysed with ML algorithms. For kidney and testis cancer, anecdotal experiences were reported for staging and prediction of diseases recurrence. More recently, AI has been applied in non-oncological diseases like stones and functional urology. CONCLUSIONS: AI technologies are growing their role in health care; but, up to now, their "real-life" implementation remains limited. However, in the near future, the potential of AI-driven era could change the clinical practice in Urology, improving overall patient outcomes.

Artificial intelligence and neural networks in urology: current clinical applications

Checcucci E.;Autorino R.;Amparore D.;De Cillis S.;Piana A.;Piazzolla P.;Fiori C.;Porpiglia F.
2020

Abstract

INTRODUCTION: As we enter the era of "big data," an increasing amount of complex health-care data will become available. These data are often redundant, "noisy," and characterized by wide variability. In order to offer a precise and transversal view of a clinical scenario the artificial intelligence (AI) with machine learning (ML) algorithms and Artificial neuron networks (ANNs) process were adopted, with a promising wide diffusion in the near future. The present work aims to provide a comprehensive and critical overview of the current and potential applications of AI and ANNs in urology. EVIDENCE ACQUISITION: A non-systematic review of the literature was performed by screening Medline, PubMed, the Cochrane Database, and Embase to detect pertinent studies regarding the application of AI and ANN in Urology. EVIDENCE SYNTHESIS: The main application of AI in urology is the field of genitourinary cancers. Focusing on prostate cancer, AI was applied for the prediction of prostate biopsy results. For bladder cancer, the prediction of recurrence-free probability and diagnostic evaluation were analysed with ML algorithms. For kidney and testis cancer, anecdotal experiences were reported for staging and prediction of diseases recurrence. More recently, AI has been applied in non-oncological diseases like stones and functional urology. CONCLUSIONS: AI technologies are growing their role in health care; but, up to now, their "real-life" implementation remains limited. However, in the near future, the potential of AI-driven era could change the clinical practice in Urology, improving overall patient outcomes.
72
1
49
57
Checcucci E.; Autorino R.; Cacciamani G.E.; Amparore D.; De Cillis S.; Piana A.; Piazzolla P.; Vezzetti E.; Fiori C.; Veneziano D.; Tewari A.; Dasgupta P.; Hung A.; Gill I.; Porpiglia F.
File in questo prodotto:
File Dimensione Formato  
2019 MUN...Artificial intelligence and neural networks in urology. current clinical applications.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 915.4 kB
Formato Adobe PDF
915.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/1738086
Citazioni
  • ???jsp.display-item.citation.pmc??? 24
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 49
social impact