In this paper, we introduce and study new h-Bernstein basis functions over a triangular domain. In particular, after defining the h-Bernstein polynomial functions of degree n, we prove their algebraic and geometric properties, such as partition of unity and degree elevation and we show that they form a basis for the space of polynomials of total degree less than or equal to n on a triangle. Then, we propose the h-de Casteljau algorithm and we prove the Marsden identity.

h-Bernstein basis functions over a triangular domain

Lamberti P.;Remogna S.;
2020-01-01

Abstract

In this paper, we introduce and study new h-Bernstein basis functions over a triangular domain. In particular, after defining the h-Bernstein polynomial functions of degree n, we prove their algebraic and geometric properties, such as partition of unity and degree elevation and we show that they form a basis for the space of polynomials of total degree less than or equal to n on a triangle. Then, we propose the h-de Casteljau algorithm and we prove the Marsden identity.
2020
79
1
14
h-Bernstein basis; h-Bernstein Bézier triangular patch; Marsden identity
Lamberti P.; Lamnii M.; Remogna S.; Sbibih D.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0167839620300364-main.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 570.92 kB
Formato Adobe PDF
570.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
LLRS.pdf

Open Access dal 24/04/2022

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 768.53 kB
Formato Adobe PDF
768.53 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1738971
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact