In this paper, we introduce and study new h-Bernstein basis functions over a triangular domain. In particular, after defining the h-Bernstein polynomial functions of degree n, we prove their algebraic and geometric properties, such as partition of unity and degree elevation and we show that they form a basis for the space of polynomials of total degree less than or equal to n on a triangle. Then, we propose the h-de Casteljau algorithm and we prove the Marsden identity.
h-Bernstein basis functions over a triangular domain
Lamberti P.;Remogna S.;
2020-01-01
Abstract
In this paper, we introduce and study new h-Bernstein basis functions over a triangular domain. In particular, after defining the h-Bernstein polynomial functions of degree n, we prove their algebraic and geometric properties, such as partition of unity and degree elevation and we show that they form a basis for the space of polynomials of total degree less than or equal to n on a triangle. Then, we propose the h-de Casteljau algorithm and we prove the Marsden identity.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0167839620300364-main.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
570.92 kB
Formato
Adobe PDF
|
570.92 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
LLRS.pdf
Open Access dal 24/04/2022
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
768.53 kB
Formato
Adobe PDF
|
768.53 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.