In this paper we prove a conjecture of J. Andrade, S.J. Miller, K. Pratt and M. Trinh, showing the existence of a non-trivial infinite F-set over Fq[x] for every fixed q. We also provide the proof of a refinement of the conjecture, involving the notion of width of an F-set, which is a natural number encoding the complexity of the set.

On the existence of infinite, non-trivial F-sets

Ferraguti A.;
2016-01-01

Abstract

In this paper we prove a conjecture of J. Andrade, S.J. Miller, K. Pratt and M. Trinh, showing the existence of a non-trivial infinite F-set over Fq[x] for every fixed q. We also provide the proof of a refinement of the conjecture, involving the notion of width of an F-set, which is a natural number encoding the complexity of the set.
2016
168
1
12
F-sets; Finite fields; Polynomials
Ferraguti A.; Micheli G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1739682
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact